Comptes Rendus
A Mori–Tanaka homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: An affine extension
Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 95-106.

A Mori–Tanaka homogenization scheme based on the “translated fields” approach is extended to elasto-viscoplastic composites with non-linear viscoplasticity described by a first-order “affine”-type linearization. This extension leads to a new theoretical interaction law between mechanical average phase fields and overall ones. This interaction law contains the coupling between elastic- and viscoplastic- mechanical interactions and phase stress histories. In order to study and discuss the validity of the present approach, the results are reported for two-phase composites and are compared to other approaches.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.12.003
Keywords: Homogenization, Translated fields, Non-linear composites, Elasto-viscoplastic materials, Mori–Tanaka, Affine formulation

Stéphane Berbenni 1; Laurent Capolungo 2

1 Laboratoire d'étude des microstructures et de mécanique des matériaux, UMR CNRS 7239, Université de Lorraine, île du Saulcy, 57045 Metz, France
2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA
@article{CRMECA_2015__343_2_95_0,
     author = {St\'ephane Berbenni and Laurent Capolungo},
     title = {A {Mori{\textendash}Tanaka} homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: {An} affine extension},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {95--106},
     publisher = {Elsevier},
     volume = {343},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crme.2014.12.003},
     language = {en},
}
TY  - JOUR
AU  - Stéphane Berbenni
AU  - Laurent Capolungo
TI  - A Mori–Tanaka homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: An affine extension
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 95
EP  - 106
VL  - 343
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2014.12.003
LA  - en
ID  - CRMECA_2015__343_2_95_0
ER  - 
%0 Journal Article
%A Stéphane Berbenni
%A Laurent Capolungo
%T A Mori–Tanaka homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: An affine extension
%J Comptes Rendus. Mécanique
%D 2015
%P 95-106
%V 343
%N 2
%I Elsevier
%R 10.1016/j.crme.2014.12.003
%G en
%F CRMECA_2015__343_2_95_0
Stéphane Berbenni; Laurent Capolungo. A Mori–Tanaka homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: An affine extension. Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 95-106. doi : 10.1016/j.crme.2014.12.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.12.003/

[1] P. Suquet Elements of homogenization for inelastic solid mechanics (E. Sanchez-Palencia; A. Zaoui, eds.), Homogenization Techniques for Composite Media, Springer, Berlin, 1987, pp. 193-278

[2] Z. Hashin The inelastic inclusion problem, Int. J. Eng. Sci., Volume 7 (1969), pp. 11-36

[3] J. Li; G.J. Weng Strain-rate sensitivity, relaxation behavior and complex moduli of a class of isotropic viscoplastic composites, ASME J. Eng. Mater. Tech., Volume 116 (1994), pp. 495-504

[4] L.C. Brinson; W.S. Lin Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites, Compos. Struct., Volume 41 (1998), pp. 353-367

[5] G. DeBotton; L. Tevet-Deree The response of a fiber-reinforced composite with a viscoelastic matrix phase, J. Compos. Mater., Volume 38 (2004), pp. 1255-1277

[6] N. Laws; R. McLaughlin Self-consistent estimates for the viscoelastic creep compliance of composite materials, Proc. R. Soc. Lond. Ser. A, Volume 359 (1978), pp. 251-273

[7] Y. Rougier; C. Stolz; A. Zaoui Self-consistent modelling of elastic–viscoplastic polycrystals, C. R. Acad. Sci. Paris Ser. IIb, Volume 318 (1994), pp. 145-151

[8] R. Masson; A. Zaoui Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials, J. Mech. Phys. Solids, Volume 47 (1999), pp. 1543-1568

[9] O. Pierard; I. Doghri An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites, Int. J. Plast., Volume 22 (2006), pp. 131-157

[10] A. Molinari; S. Ahzi; R. Kouddane On the self-consistent modelling of elastic–plastic behavior of polycrystals, Mech. Mater., Volume 26 (1997), pp. 43-62

[11] A. Paquin; H. Sabar; M. Berveiller Integral formulation and self-consistent modelling of elasto-viscoplastic behavior of heterogeneous materials, Arch. Appl. Mech., Volume 69 (1999), pp. 14-35

[12] A. Molinari Averaging models for heterogeneous viscoplastic and elastic–viscoplastic materials, ASME J. Eng. Mater. Tech., Volume 124 (2002), pp. 62-70

[13] H. Sabar; M. Berveiller; V. Favier; S. Berbenni A new class of micro–macro models for elastic–viscoplastic heterogeneous materials, Int. J. Solids Struct., Volume 39 (2002), pp. 3257-3276

[14] S. Berbenni; V. Favier; X. Lemoine; M. Berveiller Micromechanical modeling of the elastic–viscoplastic behavior of polycrystalline steels having different microstructures, Mater. Sci. Eng. A, Volume 372 (2004), pp. 128-136

[15] N. Lahellec; P. Suquet Effective behavior of linear viscoelastic composites: a time-integration approach, Int. J. Solids Struct., Volume 44 (2007), pp. 507-529

[16] N. Lahellec; P. Suquet On the effective behavior of non-linear inelastic composites: I. Incremental variational principles, J. Mech. Phys. Solids, Volume 55 (2007), pp. 1932-1963

[17] J.M. Ricaud; R. Masson Effective properties of linear viscoelastic heterogeneous media: internal variables formulation and extension to ageing behaviours, Int. J. Solids Struct., Volume 46 (2009), pp. 1599-1606

[18] R. Masson; R. Brenner; O. Castelnau Incremental homogenization approach for ageing viscoelastic polycrystals, C. R., Méc., Volume 340 (2012), pp. 378-386

[19] N. Lahellec; P. Suquet On the effective behavior of non-linear inelastic composites: II. A second-order procedure, J. Mech. Phys. Solids, Volume 55 (2007), pp. 1964-1992

[20] P. Ponte Castañeda Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys. Solids, Volume 44 (1996), pp. 827-862

[21] L. Brassard; L. Stainier; I. Doghri; L. Delannay Homogenization of elasto-(visco)plastic composites based on an incremental variational principle, Int. J. Plast., Volume 36 (2012), pp. 86-112

[22] M. Coulibaly; H. Sabar New integral formulation and self-consistent modeling of elastic–viscoplastic heterogeneous materials, Int. J. Solids Struct., Volume 48 (2011), pp. 753-763

[23] K. Kowalczyk-Gajewska; H. Petryk Sequential linearization method for viscous/elastic heterogeneous materials, Eur. J. Mech. A, Solids, Volume 30 (2011), pp. 650-664

[24] S. Mercier; N. Jacques; A. Molinari Validation of an interaction law for the Eshelby inclusion in elasto-viscoplasticity, Int. J. Solids Struct., Volume 42 (2005), pp. 1923-1941

[25] S. Mercier; A. Molinari; S. Berbenni; M. Berveiller Comparison of different homogenization approaches for elastic–viscoplastic materials, Model. Simul. Mater. Sci. Eng., Volume 20 (2012), p. 024004

[26] R. Masson; M. Bornert; P. Suquet; A. Zaoui An affine formulation for the prediction of the effective properties of non-linear composites and poly-crystals, J. Mech. Phys. Solids, Volume 48 (2000) no. 6–7, pp. 1203-1227

[27] A. Molinari; G.R. Canova; S. Ahzi A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall., Volume 35 (1987), pp. 2983-2994

[28] T. Mori; K. Tanaka Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., Volume 21 (1973), pp. 571-574

Cited by Sources:

Comments - Policy