A Mori–Tanaka homogenization scheme based on the “translated fields” approach is extended to elasto-viscoplastic composites with non-linear viscoplasticity described by a first-order “affine”-type linearization. This extension leads to a new theoretical interaction law between mechanical average phase fields and overall ones. This interaction law contains the coupling between elastic- and viscoplastic- mechanical interactions and phase stress histories. In order to study and discuss the validity of the present approach, the results are reported for two-phase composites and are compared to other approaches.
Accepted:
Published online:
Stéphane Berbenni 1; Laurent Capolungo 2
@article{CRMECA_2015__343_2_95_0, author = {St\'ephane Berbenni and Laurent Capolungo}, title = {A {Mori{\textendash}Tanaka} homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: {An} affine extension}, journal = {Comptes Rendus. M\'ecanique}, pages = {95--106}, publisher = {Elsevier}, volume = {343}, number = {2}, year = {2015}, doi = {10.1016/j.crme.2014.12.003}, language = {en}, }
TY - JOUR AU - Stéphane Berbenni AU - Laurent Capolungo TI - A Mori–Tanaka homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: An affine extension JO - Comptes Rendus. Mécanique PY - 2015 SP - 95 EP - 106 VL - 343 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2014.12.003 LA - en ID - CRMECA_2015__343_2_95_0 ER -
%0 Journal Article %A Stéphane Berbenni %A Laurent Capolungo %T A Mori–Tanaka homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: An affine extension %J Comptes Rendus. Mécanique %D 2015 %P 95-106 %V 343 %N 2 %I Elsevier %R 10.1016/j.crme.2014.12.003 %G en %F CRMECA_2015__343_2_95_0
Stéphane Berbenni; Laurent Capolungo. A Mori–Tanaka homogenization scheme for non-linear elasto-viscoplastic heterogeneous materials based on translated fields: An affine extension. Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 95-106. doi : 10.1016/j.crme.2014.12.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.12.003/
[1] Elements of homogenization for inelastic solid mechanics (E. Sanchez-Palencia; A. Zaoui, eds.), Homogenization Techniques for Composite Media, Springer, Berlin, 1987, pp. 193-278
[2] The inelastic inclusion problem, Int. J. Eng. Sci., Volume 7 (1969), pp. 11-36
[3] Strain-rate sensitivity, relaxation behavior and complex moduli of a class of isotropic viscoplastic composites, ASME J. Eng. Mater. Tech., Volume 116 (1994), pp. 495-504
[4] Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites, Compos. Struct., Volume 41 (1998), pp. 353-367
[5] The response of a fiber-reinforced composite with a viscoelastic matrix phase, J. Compos. Mater., Volume 38 (2004), pp. 1255-1277
[6] Self-consistent estimates for the viscoelastic creep compliance of composite materials, Proc. R. Soc. Lond. Ser. A, Volume 359 (1978), pp. 251-273
[7] Self-consistent modelling of elastic–viscoplastic polycrystals, C. R. Acad. Sci. Paris Ser. IIb, Volume 318 (1994), pp. 145-151
[8] Self-consistent estimates for the rate-dependent elastoplastic behaviour of polycrystalline materials, J. Mech. Phys. Solids, Volume 47 (1999), pp. 1543-1568
[9] An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites, Int. J. Plast., Volume 22 (2006), pp. 131-157
[10] On the self-consistent modelling of elastic–plastic behavior of polycrystals, Mech. Mater., Volume 26 (1997), pp. 43-62
[11] Integral formulation and self-consistent modelling of elasto-viscoplastic behavior of heterogeneous materials, Arch. Appl. Mech., Volume 69 (1999), pp. 14-35
[12] Averaging models for heterogeneous viscoplastic and elastic–viscoplastic materials, ASME J. Eng. Mater. Tech., Volume 124 (2002), pp. 62-70
[13] A new class of micro–macro models for elastic–viscoplastic heterogeneous materials, Int. J. Solids Struct., Volume 39 (2002), pp. 3257-3276
[14] Micromechanical modeling of the elastic–viscoplastic behavior of polycrystalline steels having different microstructures, Mater. Sci. Eng. A, Volume 372 (2004), pp. 128-136
[15] Effective behavior of linear viscoelastic composites: a time-integration approach, Int. J. Solids Struct., Volume 44 (2007), pp. 507-529
[16] On the effective behavior of non-linear inelastic composites: I. Incremental variational principles, J. Mech. Phys. Solids, Volume 55 (2007), pp. 1932-1963
[17] Effective properties of linear viscoelastic heterogeneous media: internal variables formulation and extension to ageing behaviours, Int. J. Solids Struct., Volume 46 (2009), pp. 1599-1606
[18] Incremental homogenization approach for ageing viscoelastic polycrystals, C. R., Méc., Volume 340 (2012), pp. 378-386
[19] On the effective behavior of non-linear inelastic composites: II. A second-order procedure, J. Mech. Phys. Solids, Volume 55 (2007), pp. 1964-1992
[20] Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys. Solids, Volume 44 (1996), pp. 827-862
[21] Homogenization of elasto-(visco)plastic composites based on an incremental variational principle, Int. J. Plast., Volume 36 (2012), pp. 86-112
[22] New integral formulation and self-consistent modeling of elastic–viscoplastic heterogeneous materials, Int. J. Solids Struct., Volume 48 (2011), pp. 753-763
[23] Sequential linearization method for viscous/elastic heterogeneous materials, Eur. J. Mech. A, Solids, Volume 30 (2011), pp. 650-664
[24] Validation of an interaction law for the Eshelby inclusion in elasto-viscoplasticity, Int. J. Solids Struct., Volume 42 (2005), pp. 1923-1941
[25] Comparison of different homogenization approaches for elastic–viscoplastic materials, Model. Simul. Mater. Sci. Eng., Volume 20 (2012), p. 024004
[26] An affine formulation for the prediction of the effective properties of non-linear composites and poly-crystals, J. Mech. Phys. Solids, Volume 48 (2000) no. 6–7, pp. 1203-1227
[27] A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall., Volume 35 (1987), pp. 2983-2994
[28] Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., Volume 21 (1973), pp. 571-574
Cited by Sources:
Comments - Policy