Comptes Rendus
New three-dimensional plastic potentials for porous solids with a von Mises matrix
Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 77-94.

In this paper, new 3-D plastic potentials for a porous solid with a von Mises matrix are obtained. First, a strain rate based potential is derived, the noteworthy result being its centro-symmetry. Moreover, it is revealed that the couplings between invariants are very specific, the most important influence of the third invariant being for axisymmetric states. It is demonstrated that the exact stress-based potential of the porous material should have the same key properties. Furthermore, it is deduced a new analytic 3-D stress-based potential that satisfies these properties. Compared to the existing criteria for porous solids with a von Mises matrix, this model is the only one that captures the specific couplings between all stress invariants and is exact for axisymmetric states.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2014.12.001
Keywords: Three-dimensional strain rate potentials, Three-dimensional stress-based potentials, Porous Mises solid, Coupled effects of stress invariants

Oana Cazacu 1; Benoit Revil-Baudard 1

1 Department of Mechanical and Aerospace Engineering, University of Florida, REEF, 1350 N. Poquito Rd., Shalimar, FL 32579, USA
@article{CRMECA_2015__343_2_77_0,
     author = {Oana Cazacu and Benoit Revil-Baudard},
     title = {New three-dimensional plastic potentials for porous solids with a von {Mises} matrix},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {77--94},
     publisher = {Elsevier},
     volume = {343},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crme.2014.12.001},
     language = {en},
}
TY  - JOUR
AU  - Oana Cazacu
AU  - Benoit Revil-Baudard
TI  - New three-dimensional plastic potentials for porous solids with a von Mises matrix
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 77
EP  - 94
VL  - 343
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2014.12.001
LA  - en
ID  - CRMECA_2015__343_2_77_0
ER  - 
%0 Journal Article
%A Oana Cazacu
%A Benoit Revil-Baudard
%T New three-dimensional plastic potentials for porous solids with a von Mises matrix
%J Comptes Rendus. Mécanique
%D 2015
%P 77-94
%V 343
%N 2
%I Elsevier
%R 10.1016/j.crme.2014.12.001
%G en
%F CRMECA_2015__343_2_77_0
Oana Cazacu; Benoit Revil-Baudard. New three-dimensional plastic potentials for porous solids with a von Mises matrix. Comptes Rendus. Mécanique, Volume 343 (2015) no. 2, pp. 77-94. doi : 10.1016/j.crme.2014.12.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.12.001/

[1] A.L. Gurson Continuum theory of ductile rupture by void nucleation and growth, Part I: yield criteria and flow rules for porous ductile media, J. Eng. Mater. Tech. Trans. ASME, Series H, Volume 99 (1977), pp. 2-15

[2] V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions, Int. J. Fract., Volume 17 (1981), pp. 389-407

[3] V. Monchiet Contribution à la modélisation micromécanique de l'endommagement et de la fatigue des métaux ductiles, Université de Lille, France, 2006 Ph.D. thesis (in French)

[4] A.B. Richelsen; V. Tvergaard Dilatant plasticity or upper bound estimates for porous ductile solids, Acta Metall. Mater., Volume 42 (1994), pp. 2561-2577

[5] J.L. Alves; B. Revil-Baudard; O. Cazacu Importance of the coupling between the sign of the mean stress and the third invariant on the rate of void growth and collapse in porous solids with a von Mises matrix, Model. Simul. Mater. Sci. Eng., Volume 22 (2014) no. 2, p. 025005

[6] O. Cazacu; J.B. Stewart Plastic potentials for porous aggregates with the matrix exhibiting tension–compression asymmetry, J. Mech. Phys. Solids, Volume 57 (2009), pp. 325-341

[7] R.A. Lebensohn; O. Cazacu Effect of single-crystal plastic deformation mechanisms on the dilatational plastic response of porous polycrystals, Int. J. Solids Struct., Volume 49 (2012), pp. 3838-3852

[8] O. Cazacu; B. Revil-Baudard; R.A. Lebensohn; M. Garajeu On the combined effects of pressure and third invariant on yielding of porous solids with a von Mises matrix, J. Appl. Mech., Volume 80 (2013) no. 6 (064501-0645015)

[9] R. Hill The essential structure of constitutive laws for metal composites and polycrystals, J. Mech. Phys. Solids, Volume 15 (1967), pp. 79-95

[10] J. Mandel Plasticite classique et viscoplasticite, Int. Centre Mech Sci., Courses and Lectures, vol. 97, Springer, Wien, New York, 1972 (Udine, 1971)

[11] D.R.S. Talbot; J.R. Willis Variational principles for inhomogeneous non-linear media, IMA J. Appl. Math., Volume 35 (1985) no. 1, pp. 39-54

[12] A. Gurson Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction, Brown University, Rhode Island, 1975 (PhD thesis)

[13] J.R. Rice; D.M. Tracey On the ductile enlargement of voids in triaxial stress fields, J. Mech. Phys. Solids, Volume 17 (1969), pp. 201-217

[14] J. Lubliner Plasticity Theory, Dover Publications Inc., Mineola, New York, 2008

[15] D. Drucker Relation of experiments to mathematical theories of plasticity, J. Appl. Mech., Volume 16 (1949), pp. 349-357

[16] R. Hill A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond., Volume 193 (1948), pp. 281-297

[17] A.A. Benzerga; J. Besson Plastic potentials for anisotropic porous solids, Eur. J. Mech. A, Solids, Volume 20 (2001), pp. 397-434

[18] V. Monchiet; O. Cazacu; E. Charkaluk; D. Kondo Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids, Int. J. Plast., Volume 24 (2008), pp. 1158-1189

[19] J.-B. Stewart; O. Cazacu Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tension–compression asymmetry, Int. J. Solids Struct., Volume 48 (2011), pp. 357-373

Cited by Sources:

Comments - Policy