Comptes Rendus
A gradient model for torsion of nanobeams
Comptes Rendus. Mécanique, Volume 343 (2015) no. 4, pp. 289-300.

A first-order gradient model based on the Eringen nonlocal theory is presented. The variational formulation, the governing differential equation and both classical and non-classical boundary conditions of nonlocal nanobeams subjected to torsional loading distributions are derived using a thermodynamic approach, thus providing closed-form solutions. Nanocantilevers and fully campled nanobeams are considered to investigate the size-dependent static behavior of the proposed model in terms of torsional rotations and moments. The results are thus compared to those of the Eringen model, gradient elasticity theory and classical (local) model.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.02.004
Keywords: Nanobeams, Size effects, Nonlocal thermodynamics, Nonlocal torsion, Analytical solutions

Francesco Marotti de Sciarra 1; Marko Canadija 2; Raffaele Barretta 1

1 Department of Structures for Engineering and Architecture, via Claudio 25, 80121 Naples, Italy
2 Department of Engineering Mechanics, Faculty of Engineering University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia
@article{CRMECA_2015__343_4_289_0,
     author = {Francesco Marotti de Sciarra and Marko Canadija and Raffaele Barretta},
     title = {A gradient model for torsion of nanobeams},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {289--300},
     publisher = {Elsevier},
     volume = {343},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crme.2015.02.004},
     language = {en},
}
TY  - JOUR
AU  - Francesco Marotti de Sciarra
AU  - Marko Canadija
AU  - Raffaele Barretta
TI  - A gradient model for torsion of nanobeams
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 289
EP  - 300
VL  - 343
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2015.02.004
LA  - en
ID  - CRMECA_2015__343_4_289_0
ER  - 
%0 Journal Article
%A Francesco Marotti de Sciarra
%A Marko Canadija
%A Raffaele Barretta
%T A gradient model for torsion of nanobeams
%J Comptes Rendus. Mécanique
%D 2015
%P 289-300
%V 343
%N 4
%I Elsevier
%R 10.1016/j.crme.2015.02.004
%G en
%F CRMECA_2015__343_4_289_0
Francesco Marotti de Sciarra; Marko Canadija; Raffaele Barretta. A gradient model for torsion of nanobeams. Comptes Rendus. Mécanique, Volume 343 (2015) no. 4, pp. 289-300. doi : 10.1016/j.crme.2015.02.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.02.004/

[1] M.H. Kahrobaiyan; M. Asghari; M. Rahaeifard; M.T. Ahmadian A nonlinear strain gradient beam formulation, Int. J. Mech. Sci., Volume 49 (2011), pp. 1256-1267

[2] C. Li; E.T. Thostenson; T.W. Chou Sensors and actuators based on carbon nanotubes and their composites: a review, Compos. Sci. Technol., Volume 68 (2008), pp. 1227-1249

[3] S.A. Tajalli; M. Moghimi Zand; M.T. Ahmadian Effect of geometric nonlinearity on dynamic pull-in behavior of coupled-domain microstructures based on classical and shear deformation plate theories, Eur. J. Mech. A, Solids, Volume 28 (2009), pp. 916-925

[4] N.A. Fleck; G.M. Muller; M.F. Ashby; J.W. Hutchinson Strain gradient plasticity: theory and experiment, Acta Metall. Mater., Volume 42 (1994), pp. 475-487

[5] D.C.C. Lam; F. Yang; A.C.M. Chong; J. Wang; P. Tong Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, Volume 51 (2003), pp. 1477-1508

[6] A.W. McFarland; J.S. Colton Role of material microstructure in plate stiffness with relevance to microcantilever sensors, J. Micromech. Microeng., Volume 15 (2005), pp. 1060-1067

[7] A. Arslan; D. Brown; W. Davis; S. Holmstrom; S.K. Gokce; H. Urey Comb-actuated resonant torsional microscanner with mechanical amplification, J. Microelectromech. Syst., Volume 19 (2010), pp. 936-943

[8] J.M. Huang; A.Q. Liu; Z.L. Deng; Q.X. Zhang A modeling and analysis of spring-shaped torsion micromirrors for low-voltage applications, Int. J. Mech. Sci., Volume 48 (2006), pp. 650-661

[9] X.M. Zhang; F.S. Chau; C. Quan; Y.L. Lam; A.Q. Liu A study of the static characteristics of a torsional micromirror, Sens. Actuators A, Phys., Volume 90 (2001), pp. 73-81

[10] K. Maenaka; S. Ioku; N. Sawai; T. Fujita; Y. Takayama Design, fabrication and operation of MEMS gimbal gyroscope, Sens. Actuators A, Phys., Volume 121 (2005), pp. 6-15

[11] S.J. Papadakis; A.R. Hall; P.A. Williams; L. Vicci; M.R. Falvo; R. Superfine; S. Washburn Resonant oscillators with carbon-nanotube torsion springs, Phys. Rev. Lett., Volume 93 (2004), p. 146101

[12] B. Arash; Q. Wang A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes, Comput. Mater. Sci., Volume 51 (2012), pp. 303-313

[13] R. Rafiee; R.M. Moghadam On the modeling of carbon nanotubes: a critical review, Composites, Part B, Eng., Volume 56 (2014), pp. 435-449

[14] F. Marotti de Sciarra; R. Barretta A new nonlocal bending model for Euler–Bernoulli nanobeams, Mech. Res. Comm., Volume 62 (2014), pp. 25-30

[15] A.C. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys., Volume 54 (1983), pp. 4703-4710

[16] A.C. Eringen Nonlocal Continuum Field Theories, Springer, New York, 2002

[17] R. Barretta; F. Marotti de Sciarra Analogies between nonlocal and local Bernoulli–Euler nanobeams, Arch. Appl. Mech., Volume 85 (2015), pp. 89-99

[18] M. Canadija; M. Brcic; J. Brnic A finite element model for thermal dilatation of carbon nanotubes, Rev. Adv. Mater. Sci., Volume 33 (2013), pp. 1-6

[19] F. Marotti de Sciarra Finite element modeling of nonlocal beams, Physica E, Low-Dimens. Syst. Nanostruct., Volume 59 (2014), pp. 144-149

[20] E. Aifantis The physics of plastic deformation, Int. J. Plast., Volume 3 (1987), pp. 211-247

[21] E.C. Aifantis Update on a class of gradient theories, Mech. Mater., Volume 35 (2003), pp. 259-280

[22] R. Peerlings; R. de Borst; W. Brekelmans; J. de Vree Gradient enhanced damage for quasi-brittle materials, Int. J. Numer. Methods Eng., Volume 39 (1996), pp. 3391-3403

[23] F. Marotti de Sciarra Variational formulations, convergence and stability properties in nonlocal elastoplasticity, Int. J. Solids Struct., Volume 45 (2008), pp. 2322-2354

[24] H. Askes; E. Aifantis Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solids Struct., Volume 48 (2011), pp. 1962-1990

[25] T. Pardoen; T.J. Massart Interface controlled plastic flow modelled by strain gradient plasticity theory, C. R. Mecanique, Volume 340 (2012), pp. 247-260

[26] K.Y. Xu; K.A. Alnefaie; N.H. Abu-Hamdeh; K.H. Almitani; E.C. Aifantis Free transverse vibrations of a double-walled carbon nanotube: gradient and internal inertia effects, Acta Mech. Solida Sin., Volume 27 (2014), pp. 345-352

[27] F. Yang; A.C.M. Chong; D.C.C. Lam; P. Tong Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., Volume 39 (2002), pp. 2731-2743

[28] M. Asghari; M.H. Kahrobaiyan; M. Rahaeifard; M.T. Ahmadian Investigation of the size effects in Timoshenko beams based on the couple stress theory, Arch. Appl. Mech., Volume 81 (2011), pp. 863-874

[29] B. Paliwal; M. Cherkaoui; O. Fassi-Fehri Effective elastic properties of nanocomposites using a novel atomistic–continuum interphase model, C. R. Mecanique, Volume 340 (2012), pp. 296-306

[30] M. Brcic; M. Canadija; J. Brnic Estimation of material properties of nanocomposite structures, Meccanica, Volume 48 (2013), pp. 2209-2220

[31] J. Song; J. Liu; H. Ma; L. Liang; Y. Wei Determinations of both length scale and surface elastic parameters for fcc metals, C. R. Mecanique, Volume 342 (2014), pp. 315-325

[32] C. Ru; E. Aifantis A simple approach to solve boundary-value problems in gradient elasticity, Acta Mech., Volume 101 (1993), pp. 59-68

[33] L. Tenek; E. Aifantis A two-dimensional finite element implementation of a special form of gradient elasticity, Comput. Model. Eng. Sci., Volume 3 (2002), pp. 731-741

[34] C. Polizzotto Gradient elasticity and nonstandard boundary conditions, Int. J. Solids Struct., Volume 40 (2003), pp. 7399-7423

[35] J. Lemaitre; L. Chaboche Mechanics of Solid Materials, Cambridge University Press, Cambridge, UK, 1994

[36] F. Marotti de Sciarra On non-local and non-homogeneous elastic continua, Int. J. Solids Struct., Volume 46 (2009), pp. 651-676

[37] R. Barretta; F. Marotti de Sciarra; M. Diaco Small-scale effects in nanorods, Acta Mech., Volume 225 (2014), pp. 1945-1953

[38] R. Barretta; F. Marotti de Sciarra A nonlocal model for carbon nanotubes under axial loads, Adv. Mater. Sci. Eng. (2013) (Article ID 360935, pp. 1–6) | DOI

Cited by Sources:

Comments - Policy