A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid has been recently proposed, which takes into account both temporal and spatial dispersion. Here, we consider applying this theory, which enables the description of resonance effects, to the case of sound propagation through an array of Helmholtz resonators whose unusual metamaterial properties, such as negative bulk moduli, have been experimentally demonstrated. Three different calculations are performed, validating the results of the nonlocal theory, related to the frequency-dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D propagation in 2D or 3D periodic structures.
Une théorie macroscopique nonlocale générale de la propagation du son dans les milieux poreux à structure rigide saturés par un fluide viscothermique a récemment vu le jour. Tenant un compte complet des dispersions, tant temporelles que spatiales, elle décrit entièrement les résonances. Nous l'appliquons ici au cas de la propagation du son dans un réseau de résonateurs de Helmholtz, dont les propriétés non usuelles (modules de compressibilité négatifs) ont été établies expérimentalement. Trois calculs différents sont présentés, qui valident les résultats de la théorie non locale, relatifs au nombre d'onde et module de compressibilité, qui sont fonctions de la fréquence, du mode de Bloch principal (le moins atténué), pour une propagation 1D en géométries périodiques 2D ou 3D.
Accepted:
Published online:
Mots-clés : Résonateur d'Helmholtz, Métamatériaux acoustiques, Description non locale, Dispersion spatiale, Fluide viscothermique, Module de compressibilité négatif
Navid Nemati 1; Anshuman Kumar 1; Denis Lafarge 2; Nicholas X. Fang 1
@article{CRMECA_2015__343_12_656_0, author = {Navid Nemati and Anshuman Kumar and Denis Lafarge and Nicholas X. Fang}, title = {Nonlocal description of sound propagation through an array of {Helmholtz} resonators}, journal = {Comptes Rendus. M\'ecanique}, pages = {656--669}, publisher = {Elsevier}, volume = {343}, number = {12}, year = {2015}, doi = {10.1016/j.crme.2015.05.001}, language = {en}, }
TY - JOUR AU - Navid Nemati AU - Anshuman Kumar AU - Denis Lafarge AU - Nicholas X. Fang TI - Nonlocal description of sound propagation through an array of Helmholtz resonators JO - Comptes Rendus. Mécanique PY - 2015 SP - 656 EP - 669 VL - 343 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2015.05.001 LA - en ID - CRMECA_2015__343_12_656_0 ER -
%0 Journal Article %A Navid Nemati %A Anshuman Kumar %A Denis Lafarge %A Nicholas X. Fang %T Nonlocal description of sound propagation through an array of Helmholtz resonators %J Comptes Rendus. Mécanique %D 2015 %P 656-669 %V 343 %N 12 %I Elsevier %R 10.1016/j.crme.2015.05.001 %G en %F CRMECA_2015__343_12_656_0
Navid Nemati; Anshuman Kumar; Denis Lafarge; Nicholas X. Fang. Nonlocal description of sound propagation through an array of Helmholtz resonators. Comptes Rendus. Mécanique, Acoustic metamaterials and phononic crystals, Volume 343 (2015) no. 12, pp. 656-669. doi : 10.1016/j.crme.2015.05.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.05.001/
[1] Nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid-framed porous media, Wave Motion, Volume 50 (2013), pp. 1016-1035
[2] Sound Absorbing Materials, Elsevier Publishing Company, Inc., New York, 1949 reprinted 2012 by the NAG (Nederlands Akoestisch Genootschap)
[3] Theory of dynamic permeability and tortuosity in fluid-saturated porous media, J. Fluid Mech., Volume 176 (1987), pp. 379-402
[4] Dynamic tortuosity and bulk modulus in air-saturated porous media, J. Appl. Phys., Volume 70 (1991), pp. 1975-1979
[5] Dynamic compressibility of air in porous structures at audible frequencies, J. Acoust. Soc. Am., Volume 102 (1997), pp. 1995-2006
[6] Poroelasticity equations derived from microstructure, J. Acoust. Soc. Am., Volume 70 (1981), pp. 1140-1146
[7] On the viscodynamic operator in Biot's equations of poroelasticity, J. Wave-Mater. Interact., Volume 1 (1986), pp. 365-380
[8] First principles calculations of dynamic permeability in porous media, Phys. Rev. B, Volume 39 (1989), pp. 12027-12039
[9] Dynamic permeability: reformulation of theory and new experimental and numerical data, J. Fluid Mech., Volume 245 (1992), pp. 211-227
[10] Dynamic behavior of a porous medium saturated by a Newtonian fluid, Int. J. Eng. Sci., Volume 18 (1980), pp. 775-785
[11] Homogenization of Coupled Phenomena in Heterogenous Media, ISTE and Wiley, 2009
[12] Nonhomogeneous Media and Vibration Theory, Lectures Notes in Physics, vol. 127, Springer, Berlin, 1980
[13] Asymptotic Analysis for Periodic Structure, North-Holland, Amsterdam, 1978
[14] High-frequency homogenization for periodic media, Proc. R. Soc. Lond. A, Volume 466 (2010), pp. 2341-2362
[15] An asymptotic theory for waves guided by diffraction gratings or along microstructured surfaces, Proc. R. Soc. Lond. A, Volume 470 (2013), p. 20130467
[16] Large scale modulation of high frequency acoustic waves in periodic porous media, J. Acoust. Soc. Am., Volume 132 (2012), pp. 3622-3636
[17] Acoustics of porous media with inner resonators, J. Acoust. Soc. Am., Volume 134 (2013), pp. 4717-4729
[18] Homogenization scheme for acoustic metamaterials, Phys. Rev. B, Volume 89 (2014), p. 064309
[19] Effective medium theory for elastic metamaterials in two dimensions, Phys. Rev. B, Volume 76 (2007), p. 205313
[20] Sound propagation in rigid porous media: non-local macroscopic effects versus pores scale regime, Transp. Porous Media, Volume 93 (2012), pp. 309-329
[21] Exact effective relations for dynamics of a laminated body, Mech. Mater., Volume 41 (2009), pp. 385-393
[22] Electrodynamics of Continuous Media, Course of Theoretical Physics, vol. 8, Elsevier, Butterworth–Heinemann, Oxford, 2004
[23] Ultrasonic metamaterials with negative modulus, Nat. Mater., Volume 5 (2006), pp. 452-456
[24] Focusing ultrasound with an acoustic metamaterial network, Phys. Rev. Lett., Volume 102 (2009), p. 194301
[25] Broadband acoustic cloak for ultrasound waves, Phys. Rev. Lett., Volume 106 (2011), p. 24301
[26] Check on a nonlocal Maxwellian theory of sound propagation in fluid-saturated rigid-framed porous media, Wave Motion, Volume 51 (2014), pp. 716-728
[27] Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, John Wiley & Sons, 2009
[28] New development in FreeFem++, J. Numer. Math., Volume 20 (2012), pp. 251-265
[29] The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape, J. Acoust. Soc. Am., Volume 89 (1991), pp. 550-558
Cited by Sources:
Comments - Policy