Comptes Rendus
Dynamic reconfiguration of magneto-elastic lattices
Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 670-679.

The dynamic reconfiguration of two-dimensional (2D) magneto-elastic structures is studied with the goal of enabling the design of reconfigurable architectured materials. Changes in magnetization modify the energy landscape of hexagonal lattices and lead to their reconfiguration as a result of the application of a dynamic input. Such reconfiguration significantly alters the dynamics of the structure and its mechanical properties. Energy landscapes and the dynamics of reconfiguration are analyzed through the detailed study of a unit cell and the description of loci of equilibrium within the energy landscape, as well as numerical simulations on finite lattices undergoing reconfiguration. Results show the occurrence of a transition front propagating within the 2D structures according to a triangular pattern bounded by transition bands that separate different orientation domains within the structure.

Published online:
DOI: 10.1016/j.crme.2015.06.007
Keywords: Reconfiguration, Transformation dynamics, Magneto-elastic, Phase transition, Multistable

Marshall Schaeffer 1; Massimo Ruzzene 2

1 Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Dr., Atlanta, GA 30332, USA
2 George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA 30332, USA
     author = {Marshall Schaeffer and Massimo Ruzzene},
     title = {Dynamic reconfiguration of magneto-elastic lattices},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {670--679},
     publisher = {Elsevier},
     volume = {343},
     number = {12},
     year = {2015},
     doi = {10.1016/j.crme.2015.06.007},
     language = {en},
AU  - Marshall Schaeffer
AU  - Massimo Ruzzene
TI  - Dynamic reconfiguration of magneto-elastic lattices
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 670
EP  - 679
VL  - 343
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2015.06.007
LA  - en
ID  - CRMECA_2015__343_12_670_0
ER  - 
%0 Journal Article
%A Marshall Schaeffer
%A Massimo Ruzzene
%T Dynamic reconfiguration of magneto-elastic lattices
%J Comptes Rendus. Mécanique
%D 2015
%P 670-679
%V 343
%N 12
%I Elsevier
%R 10.1016/j.crme.2015.06.007
%G en
%F CRMECA_2015__343_12_670_0
Marshall Schaeffer; Massimo Ruzzene. Dynamic reconfiguration of magneto-elastic lattices. Comptes Rendus. Mécanique, Volume 343 (2015) no. 12, pp. 670-679. doi : 10.1016/j.crme.2015.06.007.

[1] L.J. Gibson; M.F. Ashby Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK, 1999

[2] S. Gonella; M. Ruzzene Analysis of in-plane wave propagation in hexagonal and re-entrant lattices, J. Sound Vib., Volume 312 (2008) no. 1, pp. 125-139

[3] F. Casadei; J.J. Rimoli Anisotropy-induced broadband stress wave steering in periodic lattices, Int. J. Solids Struct., Volume 50 (2013) no. 9, pp. 1402-1414

[4] M. Schaeffer; M. Ruzzene Wave propagation in multistable magneto-elastic lattices, Int. J. Solids Struct., Volume 56–57 (2015), pp. 78-95

[5] J.O. Vasseur; O. Bou Matar; J.-F. Robillard; A.-C. Hladky-Hennion; P.A. Deymier Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials, AIP Adv., Volume 1 (2011) no. 4, p. 041904

[6] Joseph N. Grima; Roberto Caruana-Gauci; Mirosław R. Dudek; Krzysztof W. Wojciechowski; Ruben Gatt Smart metamaterials with tunable auxetic and other properties, Smart Mater. Struct., Volume 22 (2013) no. 8, p. 084016

[7] Joseph N. Grima; Elaine Chetcuti; Elaine Manicaro; Daphne Attard; Matthew Camilleri; Ruben Gatt; Kenneth E. Evans On the auxetic properties of generic rotating rigid triangles, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 468 (2012) no. 2139, pp. 810-830

[8] K. Bertoldi; M.C. Boyce Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures, Phys. Rev. B, Volume 77 (2008) no. 5, p. 052105

[9] Katia Bertoldi; Pedro M. Reis; Stephen Willshaw; Tom Mullin Negative Poisson's ratio behavior induced by an elastic instability, Adv. Mater., Volume 22 (2010) no. 3, pp. 361-366

[10] P. Wang; F. Casadei; S. Shan; J.C. Weaver; Katia Bertoldi Harnessing buckling to design tunable locally resonant acoustic metamaterials, Phys. Rev. Lett., Volume 113 (2014) no. 1, p. 014301

[11] Katia Bertoldi; Sung Hoon Kang; Sicong Shan; Francisco Candido Shape programmable structures, IMECE2014 (2014)

[12] V.V. Smirnov; O.V. Gendelman; L.I. Manevitch Front propagation in a bistable system: how the energy is released, Phys. Rev. E, Volume 89 (2014) no. 5, p. 050901

[13] N. Nadkarni; C. Daraio; D.M. Kochmann Dynamics of periodic mechanical structures containing bistable elastic elements: from elastic to solitary wave propagation, Phys. Rev. E, Volume 90 (2014) no. 2, p. 023204

[14] A. Cherkaev; E. Cherkaev; L. Slepyan Transition waves in bistable structures, I delocalization of damage, J. Mech. Phys. Solids, Volume 53 (2005) no. 2, pp. 383-405

[15] L. Slepyan; A. Cherkaev; E. Cherkaev Transition waves in bistable structures, II: analytical solution: wave speed and energy dissipation, J. Mech. Phys. Solids, Volume 53 (2005) no. 2, pp. 407-436

[16] L.I. Slepyan; M.V. Ayzenberg-Stepanenko Localized transition waves in bistable-bond lattices, J. Mech. Phys. Solids, Volume 52 (2004) no. 7, pp. 1447-1479

[17] Venkata Suresh Guthikonda; Ryan S. Elliott Modeling martensitic phase transformations in shape memory alloys with the self-consistent lattice dynamics approach, J. Mech. Phys. Solids, Volume 61 (2013) no. 4, pp. 1010-1026

[18] L. Truskinovsky; Anna Vainchtein Kinetics of martensitic phase transitions: lattice model, SIAM J. Appl. Math., Volume 66 (2005) no. 2, pp. 533-553

[19] Felix E. Hildebrand; Rohan Abeyaratne An atomistic investigation of the kinetics of detwinning, J. Mech. Phys. Solids, Volume 56 (2008) no. 4, pp. 1296-1319

[20] O. Kastner; G.J. Ackland Mesoscale kinetics produces martensitic microstructure, J. Mech. Phys. Solids, Volume 57 (2009) no. 1, pp. 109-121 (cited by [17])

[21] (É. du Trémolet de Lacheisserie; D. Gignoux; M. Schlenker, eds.), Magnetism: Fundamentals, Springer, 2005

[22] K.W. Yung; P.B. Landecker; D.D. Villani An analytic solution for the force between two magnetic dipoles, Magn. Electr. Sep., Volume 9 (1998), pp. 39-52

[23] H. Goldstein Classical Mechanics, Addison–Wesley Publishing Company, Inc., 1953

[24] S.S. Rao Engineering Optimization: Theory and Practice, John Wiley & Sons, 2009

Cited by Sources:

Comments - Policy