There is a great interest in the availability of acoustic coatings for maritime systems applications, in particular for the reduction of radiated noise in water. The purpose of this paper is to give an overview of recent results regarding the design of such materials, which are classically of two main types: the micro-inclusion technology and the Alberich-type coating. In both cases, resonances of inclusions are exploited. Here, the concepts are extended to configurations with several layers of periodic arrangements of soft and rigid inclusions. The analysis is done using the finite-element technique. The results show a wide variety of acoustical phenomena, allowing us to customise the design according to different applications.
Accepted:
Published online:
Pierre Méresse 1; Christian Audoly 1; Charles Croënne 2; Anne-Christine Hladky-Hennion 2
@article{CRMECA_2015__343_12_645_0, author = {Pierre M\'eresse and Christian Audoly and Charles Cro\"enne and Anne-Christine Hladky-Hennion}, title = {Acoustic coatings for maritime systems applications using resonant phenomena}, journal = {Comptes Rendus. M\'ecanique}, pages = {645--655}, publisher = {Elsevier}, volume = {343}, number = {12}, year = {2015}, doi = {10.1016/j.crme.2015.07.004}, language = {en}, }
TY - JOUR AU - Pierre Méresse AU - Christian Audoly AU - Charles Croënne AU - Anne-Christine Hladky-Hennion TI - Acoustic coatings for maritime systems applications using resonant phenomena JO - Comptes Rendus. Mécanique PY - 2015 SP - 645 EP - 655 VL - 343 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2015.07.004 LA - en ID - CRMECA_2015__343_12_645_0 ER -
%0 Journal Article %A Pierre Méresse %A Christian Audoly %A Charles Croënne %A Anne-Christine Hladky-Hennion %T Acoustic coatings for maritime systems applications using resonant phenomena %J Comptes Rendus. Mécanique %D 2015 %P 645-655 %V 343 %N 12 %I Elsevier %R 10.1016/j.crme.2015.07.004 %G en %F CRMECA_2015__343_12_645_0
Pierre Méresse; Christian Audoly; Charles Croënne; Anne-Christine Hladky-Hennion. Acoustic coatings for maritime systems applications using resonant phenomena. Comptes Rendus. Mécanique, Acoustic metamaterials and phononic crystals, Volume 343 (2015) no. 12, pp. 645-655. doi : 10.1016/j.crme.2015.07.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.004/
[1] Acoustic characterisation of anechoic or decoupling coatings taking into account the supporting hull, Bath, UK (2011), pp. 29-30
[2] Marine Strategy Framework Directive, Task Group 11 Report, Underwater noise and other forms of energy, Prepared under the Administrative Arrangement between JRC and DG ENV (no 31210-2009/2010), the Memorandum of Understanding between the European Commission and ICES managed by DG MARE, and JRC's own institutional funding Walree, 2010.
[3] Réponse acoustique d'élastomère micro-inclusionnaires soumis à la pression d'immersion, 10e Congrès français d'acoustique, 2010
[4] Evaluation of sound velocity inside underwater acoustic materials using test panel acoustic measurements, J. Phys. Conf. Ser., Volume 353 (2012), p. 012004
[5] Sound absorption and sound absorbers in water (dynamic properties of rubber and rubberlike substances in the acoustic frequency region), Report NavShips 900, vol. 1, Department of the Navy, Washington, DC, USA, 1950, p. 164
[6] One dimensional model for acoustic absorption in a viscoelastic medium containing short cylindrical cavities, J. Acoust. Soc. Amer., Volume 62 (1977) no. 2, p. 298
[7] Mesure des coefficients de réflexion et de transmission de panneaux en cuve acoustique – étude comparative de différentes méthodes, Poitiers, France (2014)
[8] Determination of efficiency of anechoic or decoupling hull coatings using water tank acoustic measurements, Nantes, France (2012)
[9] Velocity and attenuation of seismic waves in two-phase media: theoretical formulations, Geophysics, Volume 39 (1974) no. 5, pp. 587-606
[10] Wave propagation in a viscoelastic medium containing fluid-filled microspheres, J. Acoust. Soc. Amer., Volume 105 (1999) no. 3, pp. 1527-1538
[11] Étude des interactions élasto-acoustiques dans des métamatériaux formés d'inclusions résonnantes réparties aléatoirement, Université Bordeaux-1, 2013 (Ph.D. thesis)
[12] Recovery of the effective wavenumber and dynamical mass density for materials with inclusions, Nantes, France (2012)
[13] Resonance theory of bubbly liquids, J. Acoust. Soc. Amer., Volume 69 (1981) no. 2, pp. 362-370
[14] Absorption mechanisms for waterborne sound in Alberich anechoic layers, Ultrasonics, Volume 19 (1981), pp. 28-30
[15] Analysis of the scattering of a plane acoustic wave by a doubly periodic structure using the finite element method: application to Alberich anechoic coatings, J. Acoust. Soc. Amer., Volume 90 (1991) no. 6, p. 3356
[16] Sound absorption by viscoelastic coatings with periodically distributed cavities, J. Acoust. Soc. Amer., Volume 119 (2006) no. 6, p. 3558
[17] Anechoic coatings obtained from two- and three-dimensional monopole resonance diffraction gratings, J. Acoust. Soc. Amer., Volume 131 (2012) no. 4, p. 2622
[18] Comments on ‘Absorption mechanisms for waterborne sound in Alberich anechoic layers’, Ultrasonics, Volume 23 (1985) no. 2, pp. 90-91
[19] Acoustic band structure of periodic elastic composites, Phys. Rev. Lett., Volume 71 (1993) no. 13, p. 2022
[20] Theory of acoustic band structure of periodic elastic composites, Phys. Rev. B, Volume 49 (1994) no. 4
[21] ATILA, Finite-element software package for the analysis of 2D & 3D structures based on smart materials, version 6.0.2, User's manual, 2010.
[22] Analysis of the propagation of plane acoustic waves in passive periodic materials using the finite element method, J. Acoust. Soc. Amer., Volume 98 (1995) no. 5, p. 2792
Cited by Sources:
Comments - Policy