Comptes Rendus
Discrete simulation of fluid dynamics
The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes
Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 545-558.

Using as a benchmark the porous flow in a square array of solid or permeable cylindrical obstacles, we evaluate the numerical performance of the two-relaxation-time lattice Boltzmann method (TRT–LBM) and the linear finite element method (FEM). We analyze the bulk, boundary and interface properties of the Brinkman-based schemes in staircase discretization on the voxel-type grids typical of porous media simulations. The effect of flow regime, grid resolution, and TRT collision degree of freedom Λ is assessed. In coarse meshes, the TRT may outperform the FEM by properly selecting Λ. Further, FEM is more oscillatory, a defect virtually suppressed in TRT with an improved strategy IBF and implicit accommodation of interface/boundary layers.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.05.003
Keywords: Brinkman equation, Bimodal porous flow system, Lattice Boltzmann equation, TRT Brinkman model, Finite element Galerkin method

Goncalo Silva 1; Irina Ginzburg 1

1 IRSTEA, Antony Regional Centre, HBAN, 1, rue Pierre-Gilles-de-Gennes, CS 10030, 92761 Antony cedex, France
@article{CRMECA_2015__343_10-11_545_0,
     author = {Goncalo Silva and Irina Ginzburg},
     title = {The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the {TRT{\textendash}LBM} and {FEM} {Brinkman} schemes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {545--558},
     publisher = {Elsevier},
     volume = {343},
     number = {10-11},
     year = {2015},
     doi = {10.1016/j.crme.2015.05.003},
     language = {en},
}
TY  - JOUR
AU  - Goncalo Silva
AU  - Irina Ginzburg
TI  - The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 545
EP  - 558
VL  - 343
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2015.05.003
LA  - en
ID  - CRMECA_2015__343_10-11_545_0
ER  - 
%0 Journal Article
%A Goncalo Silva
%A Irina Ginzburg
%T The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes
%J Comptes Rendus. Mécanique
%D 2015
%P 545-558
%V 343
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2015.05.003
%G en
%F CRMECA_2015__343_10-11_545_0
Goncalo Silva; Irina Ginzburg. The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes. Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 545-558. doi : 10.1016/j.crme.2015.05.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.05.003/

[1] A. Bejan; I. Dincer; S. Lorente; A.F. Miguel; A.H. Reis Porous and Complex Flow Structures in Modern Technologies, Springer, New York, 2004

[2] L. Talon; D. Bauer; N. Gland; S. Youssef; H. Auradou; I. Ginzburg Assessment of the two relaxation time lattice-Boltzmann scheme to simulate Stokes flow in porous media, Water Resour. Res., Volume 48 (2012)

[3] H.C. Brinkman A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., Volume 1 (1947), pp. 27-34

[4] K. Vafai Handbook of Porous Media, Taylor & Francis, New York, 2005

[5] C.K. Aidun; J.R. Clausen Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 439-472

[6] M.A. Spaid; F. Phelan Lattice Boltzmann methods for modeling microscale flow in fibrous porous media, Phys. Fluids, Volume 9 (1997), p. 2468

[7] D.M. Freed Lattice-Boltzmann method for macroscopic porous media modeling, Int. J. Mod. Phys. C, Volume 9 (1998), pp. 1491-1503

[8] Z. Guo; C. Zhao Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E, Volume 66 (2002)

[9] Q. Kang; D. Zhang; S. Chen Unified lattice Boltzmann method for flow in multiscale porous media, Phys. Rev. E, Volume 66 (2002)

[10] T. Seta Lattice Boltzmann method for fluid flows in anisotropic porous media with Brinkman equation, J. Therm. Sci. Technol., Volume 4 (2009), pp. 116-127

[11] I. Ginzburg Comment on “an improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media”: intrinsic links between LBE Brinkman schemes, Adv. Water Resour. (2015) (in press) | DOI

[12] I. Ginzburg; G. Silva; L. Talon Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite-elements in heterogeneous porous media, Phys. Rev. E, Volume 91 (2015)

[13] Y. Gao; M.M. Sharma A LGA model for fluid flow in heterogeneous porous media, Transp. Porous Media, Volume 17 (1994), pp. 1-17

[14] S.D.C. Walsh; H. Burwinkle; M.O. Saar A new partial bounce back lattice Boltzmann method for fluid flow through heterogeneous media, Comput. Geosci., Volume 36 (2009), pp. 1186-1193

[15] J. Zhu; J. Ma An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media, Adv. Water Resour., Volume 56 (2013), pp. 61-76

[16] H. Yoshida; H. Hayashi Transmission–reflection coefficient in the lattice Boltzmann method, J. Stat. Phys., Volume 155 (2014), pp. 277-299

[17] R. Li; Y.S. Yang; J. Pan; G.G. Pereira; J.A. Taylor; B. Clennel; C. Zou Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels, Phys. Rev. E, Volume 90 (2014)

[18] I. Ginzburg Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman–Enskog expansion, Phys. Rev. E, Volume 77 (2008)

[19] Y. Qian; D. d'Humières; P. Lallemand Lattice BGK models for Navier–Stokes equation, Europhys. Lett., Volume 17 (1992), pp. 479-484

[20] I. Ginzburg Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection–diffusion equations, J. Stat. Phys., Volume 126 (2007), pp. 157-206

[21] G. Silva, I. Ginzburg, Stokes–Brinkman–Darcy solutions of bimodal porous flow across periodic array of permeable cylindrical inclusions: cell model, lubrication theory and LBM/FEM numerical simulations, submitted for publication.

[22] I. Ginzburg; P.M. Adler Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J. Phys. II, Volume 4 (1994), pp. 191-214

[23] S. Kirevich; I. Ginzburg; U. Tallarek Coarse- and fine-grid numerical behavior of MRT/TRT lattice Boltzmann schemes in regular and random sphere packings, J. Comp. Physiol., Volume 281 (2014), pp. 708-742

[24] A.S. Sangani; A. Acrivos Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiph. Flow, Volume 8 (1982), pp. 193-206

[25] J. Happle Viscous flow relative to arrays of cylinders, AIChE J., Volume 5 (1959), pp. 174-177

[26] S. Kuwabara The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers, J. Phys. Soc. Jpn., Volume 14 (1959), pp. 527-532

[27] J.B. Keller Viscous flow through a grating or lattice of cylinders, J. Fluid Mech., Volume 18 (1964), pp. 94-96

[28] F.R. Phelan; G. Wise Analysis of transverse flow in aligned fibrous porous media, Composites, Volume 27A (1995), p. 25

[29] J.N. Reedy An Introduction to the Finite Element Method, McGraw–Hill International Editions, 1993

[30] COMSOL, Multiphysics, Reference guide, 2012.

[31] S. Bogner; S. Mohanty; U. Rude Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method, Int. J. Multiph. Flow, Volume 68 (2014), pp. 71-79

[32] R.W. Nash; H.B. Carver; M.O. Bernabeu; J. Hetherington; D. Groen; T. Krüger; P.V. Coveney Choice of boundary condition for lattice-Boltzmann simulation of moderate Reynolds number flow in complex domains, Phys. Rev. E, Volume 89 (2014)

[33] A.J.C. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech., Volume 271 (1994), pp. 285-309

[34] M.A. van der Hoef; R. Beetstra; J.A.M. Kuipers Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force, J. Fluid Mech., Volume 528 (2005), pp. 233-254

Cited by Sources:

Comments - Policy