Using as a benchmark the porous flow in a square array of solid or permeable cylindrical obstacles, we evaluate the numerical performance of the two-relaxation-time lattice Boltzmann method (TRT–LBM) and the linear finite element method (FEM). We analyze the bulk, boundary and interface properties of the Brinkman-based schemes in staircase discretization on the voxel-type grids typical of porous media simulations. The effect of flow regime, grid resolution, and TRT collision degree of freedom Λ is assessed. In coarse meshes, the TRT may outperform the FEM by properly selecting Λ. Further, FEM is more oscillatory, a defect virtually suppressed in TRT with an improved strategy IBF and implicit accommodation of interface/boundary layers.
Accepté le :
Publié le :
Goncalo Silva 1 ; Irina Ginzburg 1
@article{CRMECA_2015__343_10-11_545_0, author = {Goncalo Silva and Irina Ginzburg}, title = {The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the {TRT{\textendash}LBM} and {FEM} {Brinkman} schemes}, journal = {Comptes Rendus. M\'ecanique}, pages = {545--558}, publisher = {Elsevier}, volume = {343}, number = {10-11}, year = {2015}, doi = {10.1016/j.crme.2015.05.003}, language = {en}, }
TY - JOUR AU - Goncalo Silva AU - Irina Ginzburg TI - The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes JO - Comptes Rendus. Mécanique PY - 2015 SP - 545 EP - 558 VL - 343 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2015.05.003 LA - en ID - CRMECA_2015__343_10-11_545_0 ER -
%0 Journal Article %A Goncalo Silva %A Irina Ginzburg %T The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes %J Comptes Rendus. Mécanique %D 2015 %P 545-558 %V 343 %N 10-11 %I Elsevier %R 10.1016/j.crme.2015.05.003 %G en %F CRMECA_2015__343_10-11_545_0
Goncalo Silva; Irina Ginzburg. The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes. Comptes Rendus. Mécanique, Lattice Boltzmann methods for solving problems in mechanics / Méthodes de Boltzmann sur réseau pour la résolution de problèmes de mécanique, Volume 343 (2015) no. 10-11, pp. 545-558. doi : 10.1016/j.crme.2015.05.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.05.003/
[1] Porous and Complex Flow Structures in Modern Technologies, Springer, New York, 2004
[2] Assessment of the two relaxation time lattice-Boltzmann scheme to simulate Stokes flow in porous media, Water Resour. Res., Volume 48 (2012)
[3] A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., Volume 1 (1947), pp. 27-34
[4] Handbook of Porous Media, Taylor & Francis, New York, 2005
[5] Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 439-472
[6] Lattice Boltzmann methods for modeling microscale flow in fibrous porous media, Phys. Fluids, Volume 9 (1997), p. 2468
[7] Lattice-Boltzmann method for macroscopic porous media modeling, Int. J. Mod. Phys. C, Volume 9 (1998), pp. 1491-1503
[8] Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E, Volume 66 (2002)
[9] Unified lattice Boltzmann method for flow in multiscale porous media, Phys. Rev. E, Volume 66 (2002)
[10] Lattice Boltzmann method for fluid flows in anisotropic porous media with Brinkman equation, J. Therm. Sci. Technol., Volume 4 (2009), pp. 116-127
[11] Comment on “an improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media”: intrinsic links between LBE Brinkman schemes, Adv. Water Resour. (2015) (in press) | DOI
[12] Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite-elements in heterogeneous porous media, Phys. Rev. E, Volume 91 (2015)
[13] A LGA model for fluid flow in heterogeneous porous media, Transp. Porous Media, Volume 17 (1994), pp. 1-17
[14] A new partial bounce back lattice Boltzmann method for fluid flow through heterogeneous media, Comput. Geosci., Volume 36 (2009), pp. 1186-1193
[15] An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media, Adv. Water Resour., Volume 56 (2013), pp. 61-76
[16] Transmission–reflection coefficient in the lattice Boltzmann method, J. Stat. Phys., Volume 155 (2014), pp. 277-299
[17] Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels, Phys. Rev. E, Volume 90 (2014)
[18] Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman–Enskog expansion, Phys. Rev. E, Volume 77 (2008)
[19] Lattice BGK models for Navier–Stokes equation, Europhys. Lett., Volume 17 (1992), pp. 479-484
[20] Lattice Boltzmann modeling with discontinuous collision components: hydrodynamic and advection–diffusion equations, J. Stat. Phys., Volume 126 (2007), pp. 157-206
[21] G. Silva, I. Ginzburg, Stokes–Brinkman–Darcy solutions of bimodal porous flow across periodic array of permeable cylindrical inclusions: cell model, lubrication theory and LBM/FEM numerical simulations, submitted for publication.
[22] Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J. Phys. II, Volume 4 (1994), pp. 191-214
[23] Coarse- and fine-grid numerical behavior of MRT/TRT lattice Boltzmann schemes in regular and random sphere packings, J. Comp. Physiol., Volume 281 (2014), pp. 708-742
[24] Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiph. Flow, Volume 8 (1982), pp. 193-206
[25] Viscous flow relative to arrays of cylinders, AIChE J., Volume 5 (1959), pp. 174-177
[26] The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers, J. Phys. Soc. Jpn., Volume 14 (1959), pp. 527-532
[27] Viscous flow through a grating or lattice of cylinders, J. Fluid Mech., Volume 18 (1964), pp. 94-96
[28] Analysis of transverse flow in aligned fibrous porous media, Composites, Volume 27A (1995), p. 25
[29] An Introduction to the Finite Element Method, McGraw–Hill International Editions, 1993
[30] COMSOL, Multiphysics, Reference guide, 2012.
[31] Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method, Int. J. Multiph. Flow, Volume 68 (2014), pp. 71-79
[32] Choice of boundary condition for lattice-Boltzmann simulation of moderate Reynolds number flow in complex domains, Phys. Rev. E, Volume 89 (2014)
[33] Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech., Volume 271 (1994), pp. 285-309
[34] Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the permeability and drag force, J. Fluid Mech., Volume 528 (2005), pp. 233-254
- Discrete effects on the source term for the lattice Boltzmann modelling of one-dimensional reaction–diffusion equations, Computers Fluids, Volume 251 (2023), p. 105735 | DOI:10.1016/j.compfluid.2022.105735
- Lattice Boltzmann Method Pore-scale simulation of fluid flow and heat transfer in porous media: Effect of size and arrangement of obstacles into a channel, Engineering Analysis with Boundary Elements, Volume 152 (2023), p. 83 | DOI:10.1016/j.enganabound.2023.04.007
- Unified directional parabolic-accurate lattice Boltzmann boundary schemes for grid-rotated narrow gaps and curved walls in creeping and inertial fluid flows, Physical Review E, Volume 107 (2023) no. 2 | DOI:10.1103/physreve.107.025303
- Homogenized lattice Boltzmann model for simulating multi-phase flows in heterogeneous porous media, Advances in Water Resources, Volume 170 (2022), p. 104320 | DOI:10.1016/j.advwatres.2022.104320
- Steady-state two-relaxation-time lattice Boltzmann formulation for transport and flow, closed with the compact multi-reflection boundary and interface-conjugate schemes, Journal of Computational Science, Volume 54 (2021), p. 101215 | DOI:10.1016/j.jocs.2020.101215
- Discrete effects on the forcing term for the lattice Boltzmann modeling of steady hydrodynamics, Computers Fluids, Volume 203 (2020), p. 104537 | DOI:10.1016/j.compfluid.2020.104537
- Lattice Boltzmann simulations of flow and heat transfer from a permeable triangular cylinder under the influence of aiding buoyancy, International Journal of Heat and Mass Transfer, Volume 117 (2018), p. 799 | DOI:10.1016/j.ijheatmasstransfer.2017.09.115
- Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries, Physical Review E, Volume 98 (2018) no. 2 | DOI:10.1103/physreve.98.023302
- Low- and high-order accurate boundary conditions: From Stokes to Darcy porous flow modeled with standard and improved Brinkman lattice Boltzmann schemes, Journal of Computational Physics, Volume 335 (2017), p. 50 | DOI:10.1016/j.jcp.2017.01.023
- Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λbounce-back flux scheme, Physical Review E, Volume 95 (2017) no. 1 | DOI:10.1103/physreve.95.013305
- Stokes–Brinkman–Darcy Solutions of Bimodal Porous Flow Across Periodic Array of Permeable Cylindrical Inclusions: Cell Model, Lubrication Theory and LBM/FEM Numerical Simulations, Transport in Porous Media, Volume 111 (2016) no. 3, p. 795 | DOI:10.1007/s11242-016-0628-8
Cité par 11 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier