Using as a benchmark the porous flow in a square array of solid or permeable cylindrical obstacles, we evaluate the numerical performance of the two-relaxation-time lattice Boltzmann method (TRT–LBM) and the linear finite element method (FEM). We analyze the bulk, boundary and interface properties of the Brinkman-based schemes in staircase discretization on the voxel-type grids typical of porous media simulations. The effect of flow regime, grid resolution, and TRT collision degree of freedom Λ is assessed. In coarse meshes, the TRT may outperform the FEM by properly selecting Λ. Further, FEM is more oscillatory, a defect virtually suppressed in TRT with an improved strategy IBF and implicit accommodation of interface/boundary layers.
Accepted:
Published online:
Goncalo Silva 1; Irina Ginzburg 1
@article{CRMECA_2015__343_10-11_545_0, author = {Goncalo Silva and Irina Ginzburg}, title = {The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the {TRT{\textendash}LBM} and {FEM} {Brinkman} schemes}, journal = {Comptes Rendus. M\'ecanique}, pages = {545--558}, publisher = {Elsevier}, volume = {343}, number = {10-11}, year = {2015}, doi = {10.1016/j.crme.2015.05.003}, language = {en}, }
TY - JOUR AU - Goncalo Silva AU - Irina Ginzburg TI - The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes JO - Comptes Rendus. Mécanique PY - 2015 SP - 545 EP - 558 VL - 343 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2015.05.003 LA - en ID - CRMECA_2015__343_10-11_545_0 ER -
%0 Journal Article %A Goncalo Silva %A Irina Ginzburg %T The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes %J Comptes Rendus. Mécanique %D 2015 %P 545-558 %V 343 %N 10-11 %I Elsevier %R 10.1016/j.crme.2015.05.003 %G en %F CRMECA_2015__343_10-11_545_0
Goncalo Silva; Irina Ginzburg. The permeability and quality of velocity field in a square array of solid and permeable cylindrical obstacles with the TRT–LBM and FEM Brinkman schemes. Comptes Rendus. Mécanique, Lattice Boltzmann methods for solving problems in mechanics / Méthodes de Boltzmann sur réseau pour la résolution de problèmes de mécanique, Volume 343 (2015) no. 10-11, pp. 545-558. doi : 10.1016/j.crme.2015.05.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.05.003/
[1] Porous and Complex Flow Structures in Modern Technologies, Springer, New York, 2004
[2] Assessment of the two relaxation time lattice-Boltzmann scheme to simulate Stokes flow in porous media, Water Resour. Res., Volume 48 (2012)
[3] A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., Volume 1 (1947), pp. 27-34
[4] Handbook of Porous Media, Taylor & Francis, New York, 2005
[5] Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 439-472
[6] Lattice Boltzmann methods for modeling microscale flow in fibrous porous media, Phys. Fluids, Volume 9 (1997), p. 2468
[7] Lattice-Boltzmann method for macroscopic porous media modeling, Int. J. Mod. Phys. C, Volume 9 (1998), pp. 1491-1503
[8] Lattice Boltzmann model for incompressible flows through porous media, Phys. Rev. E, Volume 66 (2002)
[9] Unified lattice Boltzmann method for flow in multiscale porous media, Phys. Rev. E, Volume 66 (2002)
[10] Lattice Boltzmann method for fluid flows in anisotropic porous media with Brinkman equation, J. Therm. Sci. Technol., Volume 4 (2009), pp. 116-127
[11] Comment on “an improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media”: intrinsic links between LBE Brinkman schemes, Adv. Water Resour. (2015) (in press) |