We simulate oil slug displacement in a sinusoidal channel in order to validate computational models and algorithms for multi-component flow. This case fits in the gap between fully realistic cases characterized by complicated geometry and academic cases with simplistic geometry. Our computational model is based on the lattice Boltzmann method and allows for variation of physical parameters such as wettability and viscosity. The effect of variation of model parameters is analyzed, in particular via comparison with analytical solutions. We discuss the requirements for accurate solution of the oil slug displacement problem.
Accepted:
Published online:
Hiroshi Otomo 1; Hongli Fan 1; Randy Hazlett 2; Yong Li 1; Ilya Staroselsky 1; Raoyang Zhang 1; Hudong Chen 1
@article{CRMECA_2015__343_10-11_559_0, author = {Hiroshi Otomo and Hongli Fan and Randy Hazlett and Yong Li and Ilya Staroselsky and Raoyang Zhang and Hudong Chen}, title = {Simulation of residual oil displacement in a sinusoidal channel with the lattice {Boltzmann} method}, journal = {Comptes Rendus. M\'ecanique}, pages = {559--570}, publisher = {Elsevier}, volume = {343}, number = {10-11}, year = {2015}, doi = {10.1016/j.crme.2015.04.005}, language = {en}, }
TY - JOUR AU - Hiroshi Otomo AU - Hongli Fan AU - Randy Hazlett AU - Yong Li AU - Ilya Staroselsky AU - Raoyang Zhang AU - Hudong Chen TI - Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method JO - Comptes Rendus. Mécanique PY - 2015 SP - 559 EP - 570 VL - 343 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2015.04.005 LA - en ID - CRMECA_2015__343_10-11_559_0 ER -
%0 Journal Article %A Hiroshi Otomo %A Hongli Fan %A Randy Hazlett %A Yong Li %A Ilya Staroselsky %A Raoyang Zhang %A Hudong Chen %T Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method %J Comptes Rendus. Mécanique %D 2015 %P 559-570 %V 343 %N 10-11 %I Elsevier %R 10.1016/j.crme.2015.04.005 %G en %F CRMECA_2015__343_10-11_559_0
Hiroshi Otomo; Hongli Fan; Randy Hazlett; Yong Li; Ilya Staroselsky; Raoyang Zhang; Hudong Chen. Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method. Comptes Rendus. Mécanique, Lattice Boltzmann methods for solving problems in mechanics / Méthodes de Boltzmann sur réseau pour la résolution de problèmes de mécanique, Volume 343 (2015) no. 10-11, pp. 559-570. doi : 10.1016/j.crme.2015.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.04.005/
[1] The effects of surface roughness on contact angle with special reference to petroleum recovery, J. Can. Pet. Technol., Volume 14 (1975), p. 42
[2] A mesoscopic model for microscale hydrodynamics and interfacial phenomena Slip films and contact angle hysteresis, Phys. Rev. E, Volume 87 (2013)
[3] Int. J. Mod. Phys. C, 9 (1998), p. 1281
[4] Prediction of vortex shedding from a circular cylinder using a volumetric lattice–Boltzmann boundary approach, Eur. Phys. J. Spec. Top., Volume 171 (2009), pp. 91-97
[5] Numerical study of flow past an impulsively started cylinder by the lattice–Boltzmann method, J. Fluid Mech., Volume 519 (2004), pp. 273-300
[6] Extended volumetric scheme for lattice Boltzmann models, Phys. Rev. E, Volume 73 (2006)
[7] Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography, Phys. Rev. E, Volume 77 (2008)
[8] Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media, Phys. Rev. E, Volume 66 (2002)
[9] Wettability and rate effects on immiscible displacement: lattice Boltzmann simulation in microtomographic images of reservoir, J. Pet. Sci. Eng., Volume 20 (1998), pp. 167-175
[10] Predicting macroscopic transport properties using microscopic image data, J. Geophys. Res., Volume 111 (2006)
[11] Prediction of relative permeability in simple porous media, Phys. Rev. A, Volume 46 (1992), p. 2004
[12] Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method, SPE J., Volume 124617 (2010), pp. 923-933
[13] Studying the contact point and interface moving in a sinusoidal tube with lattice Boltzmann method, Int. J. Mod. Phys. B, Volume 15 (2001), pp. 1287-1303
[14] Proposed approximation for contact angle in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models, Phys. Rev. E, Volume 76 (2007)
[15] Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media, Int. J. Numer. Methods Fluids, Volume 61 (2009), pp. 341-354
[16] A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media, Colloids Surf. A, Physicochem. Eng. Asp., Volume 300 (2007), pp. 35-49
[17] Collocation solution of creeping Newtonian flow through periodically constricted tubes with piecewise continuous wall profile, Alchem. J., Volume 24 (1978), p. 43
[18] Collocation solution of creeping Newtonian flow through sinusoidal tubes, Alchem. J., Volume 25 (1979), p. 725
[19] Interfacial tension required for significant displacement of residual oil, SPE J., Volume 19 (1979), pp. 83-96
[20] Multiphase lattice Boltzmann simulations for porous media applications | arXiv
[21] Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, Volume 47 (1993), p. 1815
[22] Simulation of non-ideal gases and liquid-gas phase transitions by lattice Boltzmann equation, Phys. Rev. E, Volume 49 (1994), p. 2941
[23] Recovery of full rotational invariance in lattice Boltzmann formulations for high Knudsen number flows, Physica A, Volume 362 (2006) no. 1, p. 125
[24] Efficient kinetic method for fluid simulation beyond the Navier–Stokes equation, Phys. Rev. E, Volume 74 (2006)
[25] Lattice Boltzmann method with regularized pre-collision distribution functions, Math. Comput. Simul., Volume 72 (2006) no. 2–6, p. 165
[26] Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation, J. Fluid Mech., Volume 550 (2006), pp. 413-441
[27] Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows, Phys. Rev. E, Volume 86 (2012)
[28] Lattice BGK models for Navier–Stokes equation, Europhys. Lett., Volume 17 (1992), p. 479
[29] A model for collisions in gases I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., Volume 94 (1954), pp. 511-525
[30] Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., Volume 67 (1991), p. 3776
[31] Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, Volume 45 (1992)
[32] Digital physics approach to computational fluid dynamics: some basic theoretical features, Int. J. Mod. Phys. C, Volume 8 (1997), p. 675
[33] Multi-component lattice-Boltzmann model with interparticle interaction, 1995 | arXiv
[34] Diffusion in a multi-component lattice Boltzmann equation model, 1996 | arXiv
[35] A new model for granular porous media: Part I. Model formulation, AIChE J., Volume 19 (1973) no. 1, pp. 58-67
[36] Pressure tensor calculation in a class of nonideal gas lattice Boltzmann model, Phys. Rev. E, Volume 77 (2008)
Cited by Sources:
Comments - Policy