Comptes Rendus
Discrete simulation of fluid dynamics
Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method
Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 559-570.

We simulate oil slug displacement in a sinusoidal channel in order to validate computational models and algorithms for multi-component flow. This case fits in the gap between fully realistic cases characterized by complicated geometry and academic cases with simplistic geometry. Our computational model is based on the lattice Boltzmann method and allows for variation of physical parameters such as wettability and viscosity. The effect of variation of model parameters is analyzed, in particular via comparison with analytical solutions. We discuss the requirements for accurate solution of the oil slug displacement problem.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.04.005
Keywords: Multi-component, LBM, Critical pressure, Sinusoidal channel

Hiroshi Otomo 1; Hongli Fan 1; Randy Hazlett 2; Yong Li 1; Ilya Staroselsky 1; Raoyang Zhang 1; Hudong Chen 1

1 Exa Corporation, 55 Network Drive, Burlington, MA 01803, USA
2 The University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
@article{CRMECA_2015__343_10-11_559_0,
     author = {Hiroshi Otomo and Hongli Fan and Randy Hazlett and Yong Li and Ilya Staroselsky and Raoyang Zhang and Hudong Chen},
     title = {Simulation of residual oil displacement in a sinusoidal channel with the lattice {Boltzmann} method},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {559--570},
     publisher = {Elsevier},
     volume = {343},
     number = {10-11},
     year = {2015},
     doi = {10.1016/j.crme.2015.04.005},
     language = {en},
}
TY  - JOUR
AU  - Hiroshi Otomo
AU  - Hongli Fan
AU  - Randy Hazlett
AU  - Yong Li
AU  - Ilya Staroselsky
AU  - Raoyang Zhang
AU  - Hudong Chen
TI  - Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 559
EP  - 570
VL  - 343
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2015.04.005
LA  - en
ID  - CRMECA_2015__343_10-11_559_0
ER  - 
%0 Journal Article
%A Hiroshi Otomo
%A Hongli Fan
%A Randy Hazlett
%A Yong Li
%A Ilya Staroselsky
%A Raoyang Zhang
%A Hudong Chen
%T Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method
%J Comptes Rendus. Mécanique
%D 2015
%P 559-570
%V 343
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2015.04.005
%G en
%F CRMECA_2015__343_10-11_559_0
Hiroshi Otomo; Hongli Fan; Randy Hazlett; Yong Li; Ilya Staroselsky; Raoyang Zhang; Hudong Chen. Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method. Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 559-570. doi : 10.1016/j.crme.2015.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.04.005/

[1] Norman R. Morrow The effects of surface roughness on contact angle with special reference to petroleum recovery, J. Can. Pet. Technol., Volume 14 (1975), p. 42

[2] Carlos E. Colosqui; Michail E. Kavousanakis; Athanasios G. Papathanasiou; Ioannis G. Kevrekidis A mesoscopic model for microscale hydrodynamics and interfacial phenomena Slip films and contact angle hysteresis, Phys. Rev. E, Volume 87 (2013)

[3] H. Chen; C. Teixeira; K. Molving Int. J. Mod. Phys. C, 9 (1998), p. 1281

[4] Yanbing Li; R. Zhang; R. Shock; H. Chen Prediction of vortex shedding from a circular cylinder using a volumetric lattice–Boltzmann boundary approach, Eur. Phys. J. Spec. Top., Volume 171 (2009), pp. 91-97

[5] Yanbing Li; Richard shock; Raoyang Zhang; Hudong Chen Numerical study of flow past an impulsively started cylinder by the lattice–Boltzmann method, J. Fluid Mech., Volume 519 (2004), pp. 273-300

[6] Hongli Fan; Raoyang Zhang; Hudong Chen Extended volumetric scheme for lattice Boltzmann models, Phys. Rev. E, Volume 73 (2006)

[7] M.C. Sukop; H. Huang; C.L. Lin; M.D. Deo; K. Oh; J.D. Miller Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-x-ray tomography, Phys. Rev. E, Volume 77 (2008)

[8] C. Manwart; U. Aaltosalmi; A. Koponen; R. Hilfer; J. Timonen Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media, Phys. Rev. E, Volume 66 (2002)

[9] R.D. Hazlett; S.Y. Chen; W.E. Soll Wettability and rate effects on immiscible displacement: lattice Boltzmann simulation in microtomographic images of reservoir, J. Pet. Sci. Eng., Volume 20 (1998), pp. 167-175

[10] J.T. Fredrich; A.A. DiGiovanni; D.R. Noble Predicting macroscopic transport properties using microscopic image data, J. Geophys. Res., Volume 111 (2006)

[11] Steven Bryant; Martin Blunt Prediction of relative permeability in simple porous media, Phys. Rev. A, Volume 46 (1992), p. 2004

[12] T. Ramstad; P.-E. Øren; S. Bakke Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method, SPE J., Volume 124617 (2010), pp. 923-933

[13] H.-p. Fang; L.-w. Fan; Z.-w. Wang; Z.-f. Lin; Y.-h. Qian Studying the contact point and interface moving in a sinusoidal tube with lattice Boltzmann method, Int. J. Mod. Phys. B, Volume 15 (2001), pp. 1287-1303

[14] H. Huang; D.T. Thorne; M.G. Schaap; M.C. Sukop Proposed approximation for contact angle in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models, Phys. Rev. E, Volume 76 (2007)

[15] H. Huang; Z. Li; S. Liu; X.-y. Lu Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media, Int. J. Numer. Methods Fluids, Volume 61 (2009), pp. 341-354

[16] A.G. Yiotis; J. Psihogios; M.E. Kainourgiakis; A. Papaioannou; A.K. Stubos A lattice Boltzmann study of viscous coupling effects in immiscible two-phase flow in porous media, Colloids Surf. A, Physicochem. Eng. Asp., Volume 300 (2007), pp. 35-49

[17] M.A. Neira; A.C. Payatakes Collocation solution of creeping Newtonian flow through periodically constricted tubes with piecewise continuous wall profile, Alchem. J., Volume 24 (1978), p. 43

[18] M.A. Neira; A.C. Payatakes Collocation solution of creeping Newtonian flow through sinusoidal tubes, Alchem. J., Volume 25 (1979), p. 725

[19] S.G. Oh; J.C. Slattery Interfacial tension required for significant displacement of residual oil, SPE J., Volume 19 (1979), pp. 83-96

[20] H. Liu; Q. Kang; C.R. Leonardi; B.D. Jones; S. Schmieschek; A. Narváez; J.R. Willianms; A.J. Valocchi; J. Harting Multiphase lattice Boltzmann simulations for porous media applications | arXiv

[21] X. Shan; H. Chen Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, Volume 47 (1993), p. 1815

[22] Xiaowen Shan; Hudong Chen Simulation of non-ideal gases and liquid-gas phase transitions by lattice Boltzmann equation, Phys. Rev. E, Volume 49 (1994), p. 2941

[23] H. Chen; R. Zhang; I. Staroselsky; M. Jhon Recovery of full rotational invariance in lattice Boltzmann formulations for high Knudsen number flows, Physica A, Volume 362 (2006) no. 1, p. 125

[24] R. Zhang; X. Shan; H. Chen Efficient kinetic method for fluid simulation beyond the Navier–Stokes equation, Phys. Rev. E, Volume 74 (2006)

[25] J. Latt; B. Chopard Lattice Boltzmann method with regularized pre-collision distribution functions, Math. Comput. Simul., Volume 72 (2006) no. 2–6, p. 165

[26] X. Shan; X.-F. Yuan; H. Chen Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation, J. Fluid Mech., Volume 550 (2006), pp. 413-441

[27] Q. Li; K.H. Luo; X.J. Li Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows, Phys. Rev. E, Volume 86 (2012)

[28] Y. Qian; D. d'Humières; P. Lallemand Lattice BGK models for Navier–Stokes equation, Europhys. Lett., Volume 17 (1992), p. 479

[29] P.L. Bhatnagar; E. Gross; M. Krook A model for collisions in gases I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., Volume 94 (1954), pp. 511-525

[30] S. Chen; H. Chen; D. Martinez; W. Matthaeus Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., Volume 67 (1991), p. 3776

[31] H. Chen; S. Chen; W.H. Matthaeus Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, Volume 45 (1992)

[32] H. Chen; C. Teixeira; K. Molving Digital physics approach to computational fluid dynamics: some basic theoretical features, Int. J. Mod. Phys. C, Volume 8 (1997), p. 675

[33] X. Shan; G. Doolen Multi-component lattice-Boltzmann model with interparticle interaction, 1995 | arXiv

[34] X. Shan; G. Doolen Diffusion in a multi-component lattice Boltzmann equation model, 1996 | arXiv

[35] Alkiviades C. Payatakes Chi Tien; Raffi M. Turian A new model for granular porous media: Part I. Model formulation, AIChE J., Volume 19 (1973) no. 1, pp. 58-67

[36] Xiaowen Shan Pressure tensor calculation in a class of nonideal gas lattice Boltzmann model, Phys. Rev. E, Volume 77 (2008)

Cited by Sources:

Comments - Policy