Comptes Rendus
Discrete simulation of fluid dynamics
Lattice Boltzmann formulation for flows with acoustic porous media
Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 533-544.

Porous materials are commonly used in various industrial systems such as ducts, HVAC, hoods, mufflers, in order to introduce acoustic absorption and to reduce the radiated acoustics levels. For problems involving flow-induced noise mechanisms and explicit interactions between turbulent source regions, numerical approaches remain a challenging task involving, on the one hand, the coupling between unsteady flow calculations and acoustics simulations and, on the other hand, the development of advanced and sensitive numerical schemes. In this paper, acoustic materials are explicitly modeled in lattice Boltzmann simulations using equivalent fluid regions having arbitrary porosity and resistivity. Numerical simulations are compared to analytical derivations as well as experiments and semi-empirical models to validate the approach.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.07.013
Keywords: Porous medium, Acoustics, Lattice Boltzmann

Chenghai Sun 1; Franck Pérot 1; Raoyang Zhang 1; Phoi-Tack Lew 1; Adrien Mann 1; Vinit Gupta 1; David M. Freed 1; Ilya Staroselsky 1; Hudong Chen 1

1 Exa Corporation, 55 Network drive, Burlington, MA 01803, USA
@article{CRMECA_2015__343_10-11_533_0,
     author = {Chenghai Sun and Franck P\'erot and Raoyang Zhang and Phoi-Tack Lew and Adrien Mann and Vinit Gupta and David M. Freed and Ilya Staroselsky and Hudong Chen},
     title = {Lattice {Boltzmann} formulation for flows with acoustic porous media},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {533--544},
     publisher = {Elsevier},
     volume = {343},
     number = {10-11},
     year = {2015},
     doi = {10.1016/j.crme.2015.07.013},
     language = {en},
}
TY  - JOUR
AU  - Chenghai Sun
AU  - Franck Pérot
AU  - Raoyang Zhang
AU  - Phoi-Tack Lew
AU  - Adrien Mann
AU  - Vinit Gupta
AU  - David M. Freed
AU  - Ilya Staroselsky
AU  - Hudong Chen
TI  - Lattice Boltzmann formulation for flows with acoustic porous media
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 533
EP  - 544
VL  - 343
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2015.07.013
LA  - en
ID  - CRMECA_2015__343_10-11_533_0
ER  - 
%0 Journal Article
%A Chenghai Sun
%A Franck Pérot
%A Raoyang Zhang
%A Phoi-Tack Lew
%A Adrien Mann
%A Vinit Gupta
%A David M. Freed
%A Ilya Staroselsky
%A Hudong Chen
%T Lattice Boltzmann formulation for flows with acoustic porous media
%J Comptes Rendus. Mécanique
%D 2015
%P 533-544
%V 343
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2015.07.013
%G en
%F CRMECA_2015__343_10-11_533_0
Chenghai Sun; Franck Pérot; Raoyang Zhang; Phoi-Tack Lew; Adrien Mann; Vinit Gupta; David M. Freed; Ilya Staroselsky; Hudong Chen. Lattice Boltzmann formulation for flows with acoustic porous media. Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 533-544. doi : 10.1016/j.crme.2015.07.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.013/

[1] J.-F. Allard; N. Atalla Propagation of Sound in Porous Media, Wiley, 2009

[2] C.K.W. Tam; L. Auriault Time-domain impedance conditions for computational aeroacoustics, AIAA J., Volume 34 (1996), p. 917

[3] Y. Ozyoruk; L. Long; M. Jones Time-domain numerical simulation of a flow-impedance tube, J. Comput. Phys., Volume 146 (1998), pp. 29-57

[4] G. Delattre; E. Manoha; S. Redonnet; P. Sagaut Time-domain simulation of sound absorption on curved wall, Rome, Italy (2007) (AIAA-2007-3493)

[5] X.Y. Li; X.D. Li Construction and validation of a broadband time domain impedance boundary condition, Portland, Oregon (2011) (AIAA-2011-2870)

[6] A. Toutant; P. Sagaut Lattice Bolzmann simulatons of impedance tube flow, Comput. Fluids, Volume 38 (2009), pp. 458-465

[7] C. Sun; F. Pérot; R. Zhang; D.M. Freed; H. Chen Impedance boundary condition for lattice Boltzmann model, Commun. Comput. Phys., Volume 13 (2013), pp. 757-768

[8] S.W. Rienstra 1-D reflection at an impedance wall, J. Sound Vib., Volume 125 (1988), pp. 43-51

[9] F. Pérot; D.M. Freed; A. Mann Acoustic absorption of porous materials using LBM, Berlin ( May 2013 ) (AIAA-2013-2070)

[10] H. Chen; S. Chen; W. Matthaeus Recovery of the Navier–Stokes equation using a lattice-gas Boltzmann method, Phys. Rev. A, Volume 45 (1992), pp. 5339-5342

[11] Y.H. Qian; D. d'Humières; P. Lallemand Lattice BGK models for Navier–Stokes equation, Europhys. Lett., Volume 17 (1992), pp. 479-484

[12] R. Benzi; S. Succi; M. Vergassola Lattice Boltzmann equation: theory and applications, Phys. Rep., Volume 222 (1992), pp. 145-197

[13] S. Chen; G.D. Doolen Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., Volume 30 (1998), pp. 329-364

[14] H. Chen; S. Kandasamy; S. Orszag; R. Shock; S. Succi; V. Yakhot Extended Boltzmann kinetic equation for turbulent flows, Science, Volume 301 (2003), pp. 633-636

[15] H. Chen; S. Orszag; I. Staroselsky; S. Succi Expanded analogy between Boltzmann kinetic theory of fluid and turbulence, J. Fluid Mech., Volume 519 (2004), pp. 307-314

[16] B. Crouse; G. Balasubramanian; G. Senthooran; D.M. Freed; K.D. Ih; S.R. Shin Investigation of gap deflector efficiency for reduction of sunroof buffeting, SAE Conference 2009-01-2233, 2009

[17] F. Pérot; M. Meskine; S. Vergne Investigation of the statistical properties of pressure loadings on real automotive side glasses, Miami, Florida (2009) (AIAA-2009-3402)

[18] S. Senthooran; B. Crouse; G. Balasubramanian; D. Freed; S.R. Shin; K.D. Ih Effect of surface mounted microphones on automobile side glass pressure fluctuations, Richoh Arena, UK, Oct. 22 (2008)

[19] J.L. Adam; D. Ricot; F. Dubief; C. Guy Aeroacoustic simulation of automotive ventilation outlets, Paris, June 29 (2008)

[20] F. Pérot; M.S. Kim; D.M. Freed; L. Dongkon; K.D. Ih; M.H. Lee Direct aeroacoustics prediction of ducts and vents noise, Stockhlom (2010) (AIAA paper 2010-3724)

[21] A. Laffite; F. Pérot Investigation of the noise generated by cylinder flows using a direct lattice-Boltzmann approach, Miami, Florida (2009) (AIAA 2009-3268)

[22] H. Chen; X. Shan Fundamental conditions for N-th-order accurate lattice Boltzmann models, Physica D, Volume 237 (2008), pp. 2003-2008

[23] X. Shan; H. Chen Simulation of non-ideal gases and liquid–gas phase transitions by lattice Boltzmann equation, Phys. Rev. E, Volume 49 (1994), pp. 2941-2948

[24] X. Nie; X. Shan; H. Chen Lattice-Boltzmann finite-difference hybrid simulation of transonic flow, Orlando, FL, USA (2009) (AIAA 2009-139)

[25] D.M. Freed Lattice-Bolzmann method for macroscopic porous media modeling, Int. J. Mod. Phys., Volume 9 (1998), pp. 1491-1505

[26] J. Bear Dynamics of Fluids in Porous Media, Dover, New York, 1988

[27] H. Chen; C. Teixeira; K. Molving Realization of fluid boundary conditions via discrete Boltzmann dynamics, Int. J. Mod. Phys. C, Volume 9 (1998), pp. 1281-1292

[28] Y. Li; R. Shock; R. Zhang; H. Chen Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method, J. Fluid Mech., Volume 519 (2004), pp. 273-300

[29] R. Kotapati; R. Shock; H. Chen Lattice-Boltzmann simulations of flow over backward-facing inclined steps, Int. J. Mod. Phys. C, Volume 25 (2014), p. 1340021

[30] R. Zhang; C. Sun; Y. Li; R. Satti; R. Shock; J. Hoch; H. Chen Lattice Boltzmann approach for local reference frames, Commun. Comput. Phys., Volume 9 (2011), pp. 1193-1205

[31] A.S. Hersh; B. Walker Acoustical behavior of homogeneous bulk materials, 6th AIAA Aeroacoustics Conference, 1980 (AIAA-80-0986)

[32] T.L. Parrott; W.R. Watson; M.G. Jones (1987), pp. 1-46 (NASA Technical Paper 2679)

[33] M.J. Jones; P.E. Stiede Comparison of methods for determining specific acoustic impedance, J. Acoust. Soc. Amer., Volume 101 (1997), p. 2694

[34] K. Habibi; L. Mongeau Numerical simulation of sound absorption by turbulent jet flows using the lattice-Boltzmann method, 2012 (Internoise 2012, paper No. 422, New York)

Cited by Sources:

Comments - Policy