Porous materials are commonly used in various industrial systems such as ducts, HVAC, hoods, mufflers, in order to introduce acoustic absorption and to reduce the radiated acoustics levels. For problems involving flow-induced noise mechanisms and explicit interactions between turbulent source regions, numerical approaches remain a challenging task involving, on the one hand, the coupling between unsteady flow calculations and acoustics simulations and, on the other hand, the development of advanced and sensitive numerical schemes. In this paper, acoustic materials are explicitly modeled in lattice Boltzmann simulations using equivalent fluid regions having arbitrary porosity and resistivity. Numerical simulations are compared to analytical derivations as well as experiments and semi-empirical models to validate the approach.
Accepted:
Published online:
Chenghai Sun 1; Franck Pérot 1; Raoyang Zhang 1; Phoi-Tack Lew 1; Adrien Mann 1; Vinit Gupta 1; David M. Freed 1; Ilya Staroselsky 1; Hudong Chen 1
@article{CRMECA_2015__343_10-11_533_0, author = {Chenghai Sun and Franck P\'erot and Raoyang Zhang and Phoi-Tack Lew and Adrien Mann and Vinit Gupta and David M. Freed and Ilya Staroselsky and Hudong Chen}, title = {Lattice {Boltzmann} formulation for flows with acoustic porous media}, journal = {Comptes Rendus. M\'ecanique}, pages = {533--544}, publisher = {Elsevier}, volume = {343}, number = {10-11}, year = {2015}, doi = {10.1016/j.crme.2015.07.013}, language = {en}, }
TY - JOUR AU - Chenghai Sun AU - Franck Pérot AU - Raoyang Zhang AU - Phoi-Tack Lew AU - Adrien Mann AU - Vinit Gupta AU - David M. Freed AU - Ilya Staroselsky AU - Hudong Chen TI - Lattice Boltzmann formulation for flows with acoustic porous media JO - Comptes Rendus. Mécanique PY - 2015 SP - 533 EP - 544 VL - 343 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2015.07.013 LA - en ID - CRMECA_2015__343_10-11_533_0 ER -
%0 Journal Article %A Chenghai Sun %A Franck Pérot %A Raoyang Zhang %A Phoi-Tack Lew %A Adrien Mann %A Vinit Gupta %A David M. Freed %A Ilya Staroselsky %A Hudong Chen %T Lattice Boltzmann formulation for flows with acoustic porous media %J Comptes Rendus. Mécanique %D 2015 %P 533-544 %V 343 %N 10-11 %I Elsevier %R 10.1016/j.crme.2015.07.013 %G en %F CRMECA_2015__343_10-11_533_0
Chenghai Sun; Franck Pérot; Raoyang Zhang; Phoi-Tack Lew; Adrien Mann; Vinit Gupta; David M. Freed; Ilya Staroselsky; Hudong Chen. Lattice Boltzmann formulation for flows with acoustic porous media. Comptes Rendus. Mécanique, Lattice Boltzmann methods for solving problems in mechanics / Méthodes de Boltzmann sur réseau pour la résolution de problèmes de mécanique, Volume 343 (2015) no. 10-11, pp. 533-544. doi : 10.1016/j.crme.2015.07.013. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.013/
[1] Propagation of Sound in Porous Media, Wiley, 2009
[2] Time-domain impedance conditions for computational aeroacoustics, AIAA J., Volume 34 (1996), p. 917
[3] Time-domain numerical simulation of a flow-impedance tube, J. Comput. Phys., Volume 146 (1998), pp. 29-57
[4] Time-domain simulation of sound absorption on curved wall, Rome, Italy (2007) (AIAA-2007-3493)
[5] Construction and validation of a broadband time domain impedance boundary condition, Portland, Oregon (2011) (AIAA-2011-2870)
[6] Lattice Bolzmann simulatons of impedance tube flow, Comput. Fluids, Volume 38 (2009), pp. 458-465
[7] Impedance boundary condition for lattice Boltzmann model, Commun. Comput. Phys., Volume 13 (2013), pp. 757-768
[8] 1-D reflection at an impedance wall, J. Sound Vib., Volume 125 (1988), pp. 43-51
[9] Acoustic absorption of porous materials using LBM, Berlin ( May 2013 ) (AIAA-2013-2070)
[10] Recovery of the Navier–Stokes equation using a lattice-gas Boltzmann method, Phys. Rev. A, Volume 45 (1992), pp. 5339-5342
[11] Lattice BGK models for Navier–Stokes equation, Europhys. Lett., Volume 17 (1992), pp. 479-484
[12] Lattice Boltzmann equation: theory and applications, Phys. Rep., Volume 222 (1992), pp. 145-197
[13] Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., Volume 30 (1998), pp. 329-364
[14] Extended Boltzmann kinetic equation for turbulent flows, Science, Volume 301 (2003), pp. 633-636
[15] Expanded analogy between Boltzmann kinetic theory of fluid and turbulence, J. Fluid Mech., Volume 519 (2004), pp. 307-314
[16] Investigation of gap deflector efficiency for reduction of sunroof buffeting, SAE Conference 2009-01-2233, 2009
[17] Investigation of the statistical properties of pressure loadings on real automotive side glasses, Miami, Florida (2009) (AIAA-2009-3402)
[18] Effect of surface mounted microphones on automobile side glass pressure fluctuations, Richoh Arena, UK, Oct. 22 (2008)
[19] Aeroacoustic simulation of automotive ventilation outlets, Paris, June 29 (2008)
[20] Direct aeroacoustics prediction of ducts and vents noise, Stockhlom (2010) (AIAA paper 2010-3724)
[21] Investigation of the noise generated by cylinder flows using a direct lattice-Boltzmann approach, Miami, Florida (2009) (AIAA 2009-3268)
[22] Fundamental conditions for N-th-order accurate lattice Boltzmann models, Physica D, Volume 237 (2008), pp. 2003-2008
[23] Simulation of non-ideal gases and liquid–gas phase transitions by lattice Boltzmann equation, Phys. Rev. E, Volume 49 (1994), pp. 2941-2948
[24] Lattice-Boltzmann finite-difference hybrid simulation of transonic flow, Orlando, FL, USA (2009) (AIAA 2009-139)
[25] Lattice-Bolzmann method for macroscopic porous media modeling, Int. J. Mod. Phys., Volume 9 (1998), pp. 1491-1505
[26] Dynamics of Fluids in Porous Media, Dover, New York, 1988
[27] Realization of fluid boundary conditions via discrete Boltzmann dynamics, Int. J. Mod. Phys. C, Volume 9 (1998), pp. 1281-1292
[28] Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method, J. Fluid Mech., Volume 519 (2004), pp. 273-300
[29] Lattice-Boltzmann simulations of flow over backward-facing inclined steps, Int. J. Mod. Phys. C, Volume 25 (2014), p. 1340021
[30] Lattice Boltzmann approach for local reference frames, Commun. Comput. Phys., Volume 9 (2011), pp. 1193-1205
[31] Acoustical behavior of homogeneous bulk materials, 6th AIAA Aeroacoustics Conference, 1980 (AIAA-80-0986)
[32]
(1987), pp. 1-46 (NASA Technical Paper 2679)[33] Comparison of methods for determining specific acoustic impedance, J. Acoust. Soc. Amer., Volume 101 (1997), p. 2694
[34] Numerical simulation of sound absorption by turbulent jet flows using the lattice-Boltzmann method, 2012 (Internoise 2012, paper No. 422, New York)
Cited by Sources:
Comments - Policy