Comptes Rendus
Towards predictive simulations of machining
Comptes Rendus. Mécanique, Volume 344 (2016) no. 4-5, pp. 284-295.

Machining simulations are challenging with respect to both numerical issues and physical phenomena occurring during machining. The latter are mainly related to the description of the bulk material behaviour (plasticity) and surface properties (friction and wear). The aim of this paper is to present what is required for predictive models, depending on their scopes, as well as the needed developments for the future. The paper includes a short review of selected works that are relevant for this purpose as well as conclusions based on our own experience.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.06.010
Keywords: Simulations, Machining, High strain rate, Friction, Plasticity

Lars-Erik Lindgren 1; Ales Svoboda 1; Dan Wedberg 2; Mikael Lundblad 2

1 Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå, Sweden
2 AB Sandvik Coromant, Metal Cutting Research, 811 81 Sandviken, Sweden
@article{CRMECA_2016__344_4-5_284_0,
     author = {Lars-Erik Lindgren and Ales Svoboda and Dan Wedberg and Mikael Lundblad},
     title = {Towards predictive simulations of machining},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {284--295},
     publisher = {Elsevier},
     volume = {344},
     number = {4-5},
     year = {2016},
     doi = {10.1016/j.crme.2015.06.010},
     language = {en},
}
TY  - JOUR
AU  - Lars-Erik Lindgren
AU  - Ales Svoboda
AU  - Dan Wedberg
AU  - Mikael Lundblad
TI  - Towards predictive simulations of machining
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 284
EP  - 295
VL  - 344
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2015.06.010
LA  - en
ID  - CRMECA_2016__344_4-5_284_0
ER  - 
%0 Journal Article
%A Lars-Erik Lindgren
%A Ales Svoboda
%A Dan Wedberg
%A Mikael Lundblad
%T Towards predictive simulations of machining
%J Comptes Rendus. Mécanique
%D 2016
%P 284-295
%V 344
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2015.06.010
%G en
%F CRMECA_2016__344_4-5_284_0
Lars-Erik Lindgren; Ales Svoboda; Dan Wedberg; Mikael Lundblad. Towards predictive simulations of machining. Comptes Rendus. Mécanique, Volume 344 (2016) no. 4-5, pp. 284-295. doi : 10.1016/j.crme.2015.06.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.06.010/

[1] P.J. Arrazola; T. Özel; D. Umbrello; M. Davies; I.S. Jawahir Recent advances in modelling of metal machining processes, CIRP Ann., Volume 62 (2013), pp. 695-718

[2] T. Marusich; M. Ortiz Modelling and simulation of high-speed machining, Int. J. Numer. Methods Eng., Volume 38 (1995), pp. 3675-3694

[3] T. Marusich; M. Ortiz Simulation of high-speed machining (T.J.R. Hughes; E. Onate; O.C. Zienkiewicz, eds.), Recent Developments in Finite Element Analysis, CIMNE Publications, Barcelona, 1994, pp. 62-77

[4] M. Calamaz; J. Limido; M. Nouari; C. Espinosa; D. Coupard; M. Salaün; F. Girot; R. Chieragatti Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials, Int. J. Refract. Met. Hard Mater., Volume 27 (2009), pp. 595-604

[5] J. Limido; C. Espinosa; M. Salaün; J.L. Lacome SPH method applied to high speed cutting modelling, Int. J. Mech. Sci., Volume 49 (2007), pp. 898-908

[6] Y. Xi; M. Bermingham; G. Wang; M. Dargusch SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy, Comput. Mater. Sci., Volume 84 (2014), pp. 188-197

[7] M. Vaz; D. Owen; V. Kalhori; M. Lundblad; L.-E. Lindgren Modelling and simulation of machining processes, Arch. Comput. Methods Eng., Volume 14 (2007), pp. 173-204

[8] I. Jawahir; C. van Luttervelt Recent developments in chip control research and applications, CIRP Ann., Volume 42 (1993), p. 659

[9] J.-M. Bergheau, Wiley–ISTE (2014), p. 480

[10] I.S. Jawahir; E. Brinksmeier; R. M'Saoubi; D.K. Aspinwall; J.C. Outeiro; D. Meyer; D. Umbrello; A.D. Jayal Surface integrity in material removal processes: recent advances, CIRP Ann., Volume 60 (2011), pp. 603-626

[11] Y. Altintas Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, Cambridge Press, 2000

[12] V. Astahkov Metal Cutting Mechanics, CRC Press LLC, 2000

[13] A.K. Balaji; R. Ghosh; X.D. Fang; R. Stevenson; I.S. Jawahir Performance-based predictive models and optimization methods for turning operations and applications: part 2, assessment of chip forms/chip breakability, J. Manuf. Process., Volume 8 (2006), pp. 144-158

[14] L.-E. Lindgren Computational Welding Mechanics. Thermomechanical and Microstructural Simulations, Woodhead Publishing, 2007

[15] T.G. Trucano; L.P. Swiler; T. Igusa; W.L. Oberkampf; M. Pilch Calibration, validation, and sensitivity analysis: what's what, Reliab. Eng. Syst. Saf., Volume 91 (2006), pp. 1331-1357

[16] W.L. Oberkampf; T.G. Trucano; C. Hirsch Verification, validation, and predictive capability in computational engineering and physics, Appl. Mech. Rev., Volume 57 (2004), pp. 345-384

[17] T. Belytschko; W.K. Liu; B. Moran Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Chichester, England, 2000

[18] L.-E. Lindgren; D. Wedberg; A. Svoboda Verification and validation of machining simulations for sufficient accuracy, COMPLAS X, CIMNE, Barcelona, Spain (E. Onate; D.R.J. Owen, eds.) (2009), p. 4

[19] H. Tersing; J. Lorentzon; A. Francois; A. Lundbäck; B. Babu; J. Barboza; V. Bäcker; L.E. Lindgren Simulation of manufacturing chain of a titanium aerospace component with experimental validation, Finite Elem. Anal. Des., Volume 51 (2012), pp. 10-21

[20] P. Bussetta; R. Boman; J.-P. Ponthot Efficient 3D data transfer operators based on numerical integration, Int. J. Numer. Methods Eng., Volume 102 (2015), pp. 892-929

[21] T.H.C. Childs Ductile shear failure damage modelling and predicting built-up edge in steel machining, J. Mater. Process. Technol., Volume 213 (2013), pp. 1954-1969

[22] T.H.C. Childs Developments in simulating built up edge formation in steel machining, Proc. CIRP, Volume 1 (2012), pp. 78-83

[23] Y. Karpat Temperature dependent flow softening of titanium alloy Ti6Al4V: an investigation using finite element simulation of machining, J. Mater. Process. Technol., Volume 211 (2011), pp. 737-749

[24] P.J. Arrazola; A. Villar; D. Ugarte; S. Marya Serrated chip prediction in finite element modeling of the chip formation process, Mach. Sci. Technol., Volume 11 (2007), pp. 367-390

[25] M. Calamaz; D. Coupard; F. Girot A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V, Int. J. Mach. Tools Manuf., Volume 48 (2008), pp. 275-288

[26] M. Sima; T. Özel Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V, Int. J. Mach. Tools Manuf., Volume 50 (2010), pp. 943-960

[27] Y.B. Guo; D.W. Yen A FEM study on mechanisms of discontinuous chip formation in hard machining, J. Mater. Process. Technol., Volume 155–156 (2004), pp. 1350-1356

[28] O. Abiri; L.-E. Lindgren Non-local damage models in manufacturing simulations, Eur. J. Mech. A, Solids, Volume 49 (2015), pp. 548-560

[29] M. Nouari; H. Makich On the physics of machining titanium alloys: interactions between cutting parameters, microstructure and tool wear, Metals, Volume 4 (2014), pp. 335-358

[30] J. Leopold; R. Wohlgemuth Modeling and simulation of burr formation: state-of-the-art and future trends (J. Aurich; D. Dornfield, eds.), Burr — Analysis, Control and Removal, Springer-Verlag, Heidelberg, 2009

[31] A. Svoboda; D. Wedberg; L.-E. Lindgen Simulation of metal cutting using a physically based plasticity model, Model. Simul. Mater. Sci. Eng., Volume 18 (2010)

[32] D. Ulutan; T. Özel Determination of tool friction in presence of flank wear and stress distribution based validation using finite element simulations in machining of titanium and nickel based alloys, J. Mater. Process. Technol., Volume 213 (2013), pp. 2217-2237

[33] M. Olsson; S. Söderberg; S. Jacobson; S. Hogmark Simulation of cutting tool wear by a modified pin-on-disc test, Int. J. Mach. Tools Manuf., Volume 29 (1989), pp. 377-390

[34] M. Olsson; B. Stridh; S. Söderberg; U. Jansson Sliding wear of hard materials — the importance of a fresh countermaterial surface, Wear, Volume 124 (1988), pp. 195-216

[35] P. Hedenqvist; M. Olsson Sliding wear testing of coated cutting tool materials, Tribol. Int., Volume 24 (1991), pp. 143-150

[36] F. Zemzemi; J. Rech; W. Ben Salem; A. Dogui; P. Kapsa Identification of a friction model at tool/chip/workpiece interfaces in dry machining of AISI4142 treated steels, J. Mater. Process. Technol., Volume 209 (2009), pp. 3978-3990

[37] C. Bonnet; F. Valiorgue; J. Rech; C. Claudin; H. Hamdi; J.M. Bergheau; P. Gilles Identification of a friction model — application to the context of dry cutting of an AISI 316L austenitic stainless steel with a TiN coated carbide tool, Int. J. Mach. Tools Manuf., Volume 48 (2008), pp. 1211-1223

[38] A. Attanasio; E. Ceretti; S. Rizzuti; D. Umbrello; F. Micari 3D finite element analysis of tool wear in machining, CIRP Ann., Volume 57 (2008), pp. 61-64

[39] J.L. Battaglia; O. Cois; L. Puigsegur; A. Oustaloup Solving an inverse heat conduction problem using a non-integer identified model, Int. J. Heat Mass Transf., Volume 44 (2001), pp. 2671-2680

[40] A. Attanasio; D. Umbrello; C. Cappellini; G. Rotella; R. M'Saoubi Tool wear effects on white and dark layer formation in hard turning of AISI 52100 steel, Wear, Volume 286–287 (2012), pp. 98-107

[41] F. Zanger; V. Schulze Investigations on mechanisms of tool wear in machining of Ti–6Al–4V using FEM simulation, Proc. CIRP, Volume 8 (2013), pp. 158-163

[42] J. Lorentzon; N. Järvstråt Modelling of tool wear in cemented-carbide machining alloy 718, Int. J. Mach. Tools Manuf., Volume 48 (2008), pp. 1072-1080

[43] J. Barry; G. Byrne Cutting tool wear in the machining of hardened steels, part I: alumina/TiC cutting tool wear, Wear, Volume 247 (2001), pp. 139-151

[44] S. Kannan; H.A. Kishawy; I. Deiab Cutting forces and TEM analysis of the generated surface during machining metal matrix composites, J. Mater. Process. Technol., Volume 209 (2009), pp. 2260-2269

[45] G. Ljustina; R. Larsson; M. Fagerström A FE based machining simulation methodology accounting for cast iron microstructure, Finite Elem. Anal. Des., Volume 80 (2014), pp. 1-10

[46] S. Cedergren Influence of Material Variations on Machinability: Machining Difficult-to-Machine Alloys, Department of Materials and Manufacturing Technology, Chalmers University of Technology, Gothenburg, 2015

[47] D. Umbrello; J.C. Outeiro; R. M'Saoubi; A.D. Jayal; I.S. Jawahir A numerical model incorporating the microstructure alteration for predicting residual stresses in hard machining of AISI 52100 steel, CIRP Ann., Volume 59 (2010), pp. 113-116

[48] C. Courbon; T. Mabrouki; J. Rech; D. Mazuyer; F. Perrard; E. D'Eramo Further insight into the chip formation of ferritic–pearlitic steels: microstructural evolutions and associated thermo-mechanical loadings, Int. J. Mach. Tools Manuf., Volume 77 (2014), pp. 34-46

[49] C. Courbon; T. Mabrouki; J. Rech; D. Mazuyer; F. Perrard; E. D'Eramo Towards a physical FE modelling of a dry cutting operation: influence of dynamic recrystallization when machining AISI 1045, Proc. CIRP, Volume 8 (2013), pp. 516-521

[50] A. Mondelin; F. Valiorgue; J. Rech; M. Coret; E. Feulvarch Modeling of surface dynamic recrystallisation during the finish turning of the 15-5PH steel, Proc. CIRP, Volume 8 (2013), pp. 311-315

[51] X.P. Zhang; R. Shivpuri; A.K. Srivastava Role of phase transformation in chip segmentation during high speed machining of dual phase titanium alloys, J. Mater. Process. Technol., Volume 214 (2014), pp. 3048-3066

[52] E. Perdahcıoğlu; H. Geijselaers Constitutive modeling of two phase materials using the mean field method for homogenization, Int. J. Mater. Forming, Volume 4 (2011), pp. 93-102

[53] G. Styger; R.F. Laubscher; G.A. Oosthuizen Effect of constitutive modeling during finite element analysis of machining-induced residual stresses in Ti6Al4V, Proc. CIRP, Volume 13 (2014), pp. 294-301

[54] F. Jafarian; M. Imaz Ciaran; D. Umbrello; P.J. Arrazola; L. Filice; H. Amirabadi Finite element simulation of machining Inconel 718 alloy including microstructure changes, Int. J. Mech. Sci., Volume 88 (2014), pp. 110-121

[55] R. Seshadri; I. Naveen; S. Srinivasan; M. Viswasubrahmanyam; K.S. VijaySekar; M. Pradeep Kumar Finite element simulation of the orthogonal machining process with Al 2024 T351 aerospace alloy, Proc. Eng., Volume 64 (2013), pp. 1454-1463

[56] A. Shrot; M. Bäker Determination of Johnson–Cook parameters from machining simulations, Comput. Mater. Sci., Volume 52 (2012), pp. 298-304

[57] D. Umbrello; R. M'Saoubi; J.C. Outeiro The influence of Johnson–Cook material constants on finite element simulation of machining of AISI 316L steel, Int. J. Mach. Tools Manuf., Volume 47 (2007), pp. 462-470

[58] M.R. Vaziri; M. Salimi; M. Mashayekhi A new calibration method for ductile fracture models as chip separation criteria in machining, Simul. Model. Pract. Theory, Volume 18 (2010), pp. 1286-1296

[59] S. Kouadri; K. Necib; S. Atlati; B. Haddag; M. Nouari Quantification of the chip segmentation in metal machining: application to machining the aeronautical aluminium alloy AA2024-T351 with cemented carbide tools WC-Co, Int. J. Mach. Tools Manuf., Volume 64 (2013), pp. 102-113

[60] R. Liu; S. Melkote; R. Pucha; J. Morehouse; X. Man; T. Marusich An enhanced constitutive material model for machining of Ti–6Al–4V alloy, J. Mater. Process. Technol., Volume 213 (2013), pp. 2238-2246

[61] D. Wedberg, Luleå University of Technology, Luleå (2010), p. 68

[62] D. Wedberg; A. Svoboda; L.-E. Lindgren Modelling high strain rate phenomena in metal cutting simulation, Model. Simul. Mater. Sci. Eng., Volume 20 (2012)

[63] H. Frost, M. Ashby, Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Web version of corresponding book.

[64] H.J. Frost; M.F. Ashby Deformation-mechanism maps for pure iron, two austenitic stainless steels and a low-alloy ferritic steel (R.I. Jaffee; B.A. Wilcox, eds.), Fundamental Aspects of Structural Alloy Design, Plenum Press, 1977, pp. 26-65

[65] Y. Bergström A dislocation model for the stress–strain behaviour of polycrystalline [alpha]-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations, Materials Science and Engineering, Volume 5 ( 1969/1970 ), pp. 193-200

[66] Y. Bergström The plastic deformation of metals — a dislocation model and its applicability, Rev. Powder Metal. Phys. Ceram., Volume 2/3 (1983), pp. 79-265

[67] L.-E. Lindgren; K. Domkin; S. Hansson Dislocations, vacancies and solute diffusion in physical based plasticity model for AISI 316L, Mech. Mater., Volume 40 (2008), pp. 907-919

[68] R. Liu; M. Salahshoor; S.N. Melkote; T. Marusich The prediction of machined surface hardness using a new physics-based material model, Proc. CIRP, Volume 13 (2014), pp. 249-256

[69] R. Liu; M. Salahshoor; S.N. Melkote; T. Marusich A unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC Copper, J. Mater. Process. Technol., Volume 216 (2015), pp. 328-338

[70] R. Liu; M. Salahshoor; S.N. Melkote; T. Marusich A unified internal state variable material model for inelastic deformation and microstructure evolution in SS304, Mater. Sci. Eng. A, Volume 594 (2014), pp. 352-363

[71] V. Kalhori; D. Wedberg; L.-E. Lindgren Simulation of mechanical cutting using a physical based material model, Int. J. Mater. Forming, Volume 3 (2010), pp. 511-514

[72] M. Fisk; J.C. Ion; L.E. Lindgren Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment, Comput. Mater. Sci., Volume 82 (2014), pp. 531-539

[73] B. Babu; L.-E. Lindgren Dislocation density based model for plastic deformation and globularisation of Ti–6Al–4V, Int. J. Plast., Volume 50 (2013), pp. 94-108

[74] D. Wedberg; A. Svoboda; L.-E. Lindgren Predictive capability of constitutive model outside the range of calibration, COMPLAS XI, Barcelona, Spain (E. Onate; D.R.J. Owen, eds.) (2011), p. 4

[75] B. Revil-Baudard; O. Cazacu; P. Flater; G. Kleiser Plastic deformation of high-purity α-titanium: model development and validation using the Taylor cylinder impact test, Mech. Mater. B, Volume 80 (2015), pp. 264-275

[76] B. Mishra; C. Mondal; R. Goyal; P. Ghosal; K.S. Kumar; V. Madhu Plastic flow behavior of 7017 and 7055 aluminum alloys under different high strain rate test methods, Mater. Sci. Eng. A, Volume 612 (2014), pp. 343-353

[77] E. Uhlmann; M.G. von der Schulenburg; R. Zettier Finite element modeling and cutting simulation of Inconel 718, CIRP Ann., Volume 56 (2007), pp. 61-64

[78] T. Mabrouki; F. Girardin; M. Asad; J.-F. Rigal Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351), Int. J. Mach. Tools Manuf., Volume 48 (2008), pp. 1187-1197

[79] A. Molinari; C. Musquar; G. Sutter Adiabatic shear banding in high speed machining of Ti–6Al–4V: experiments and modeling, Int. J. Plast., Volume 18 (2002), pp. 443-459

[80] G. Mathieu; V. Frederic; E. Feulvarch Combination of two simulation methods for prediction of residual stresses induced in turning operation, Saint-Étienne, France (2014)

[81] D. Umbrello; L. Filice; S. Rizzuti; F. Micari On the evaluation of the global heat transfer coefficient in cutting, Int. J. Mach. Tools Manuf., Volume 47 (2007), pp. 1738-1743

Cited by Sources:

Comments - Policy