Comptes Rendus
A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin
Comptes Rendus. Mécanique, Computational simulation of manufacturing processes, Volume 344 (2016) no. 4-5, pp. 267-283.

We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.09.008
Keywords: Woven composites, Mesh generation, Representative Volume Element, Mesoscopic approach

Manh Hung Ha 1 ; Ludovic Cauvin 1 ; Alain Rassineux 1

1 Sorbonne universités, Université de technologie de Compiègne, CNRS, Laboratoire Roberval, UMR 7337 CNRS/UTC 7337, Centre de recherches de Royallieu, BP 20529, 60205 Compiègne, France
@article{CRMECA_2016__344_4-5_267_0,
     author = {Manh Hung Ha and Ludovic Cauvin and Alain Rassineux},
     title = {A methodology to mesh mesoscopic representative volume element of {3D} interlock woven composites impregnated with resin},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {267--283},
     publisher = {Elsevier},
     volume = {344},
     number = {4-5},
     year = {2016},
     doi = {10.1016/j.crme.2015.09.008},
     language = {en},
}
TY  - JOUR
AU  - Manh Hung Ha
AU  - Ludovic Cauvin
AU  - Alain Rassineux
TI  - A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 267
EP  - 283
VL  - 344
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2015.09.008
LA  - en
ID  - CRMECA_2016__344_4-5_267_0
ER  - 
%0 Journal Article
%A Manh Hung Ha
%A Ludovic Cauvin
%A Alain Rassineux
%T A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin
%J Comptes Rendus. Mécanique
%D 2016
%P 267-283
%V 344
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2015.09.008
%G en
%F CRMECA_2016__344_4-5_267_0
Manh Hung Ha; Ludovic Cauvin; Alain Rassineux. A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin. Comptes Rendus. Mécanique, Computational simulation of manufacturing processes, Volume 344 (2016) no. 4-5, pp. 267-283. doi : 10.1016/j.crme.2015.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.09.008/

[1] B.K. Behera; B.P. Dash Mechanical behavior of 3D woven composites, Mater. Des., Volume 67 (2015), pp. 261-271

[2] G. Hivet; A.V. Duong A contribution to the analysis of the intrinsic shear behaviour of fabrics, J. Compos. Mater., Volume 45 (2011) no. 6, pp. 695-717

[3] Z. Aboura; K. Khellil; M.L. Benzeggagh; A. Bouden; R. Ayad A new generation of 3D composite materials: advantage and disadvantage, Damage and Fracture Mechanics: Failure Analysis of Engineering Materials and Structures, 2009, pp. 473-483

[4] A. Willems; S.V. Lomov; I. Verpoest; D. Vandepitte Optical strain fields in shear and tensile testing of textile reinforcements, Compos. Sci. Technol., Volume 68 (2008), pp. 807-819

[5] S.V. Lomov; D.S. Ivanov; T.C. Truong; I. Verpoest; F. Baudry; K. Vanden Bosche; H. Xie Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test, Compos. Sci. Technol., Volume 68 (2008) no. 12, pp. 2340-2349

[6] J. Cao; R. Akkerman; P. Boisse; J. Chen; H.S. Cheng; E.F. de Graaf; J.L. Gorczyca; P. Harrison; G. Hivet; J. Launay; W. Lee; L. Liu; S.V. Lomov; A. Long; E. de Luycker; F. Morestin; J. Padvoiskis; X.Q. Peng; J. Sherwood; Tz. Stoilova; X.M. Tao; I. Verpoest; A. Willems; J. Wiggers; T.X. Yu; B. Zhu Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results, Composites, Part A, Appl. Sci. Manuf., Volume 39 (2008) no. 6, pp. 1037-1053

[7] A. Gasser; P. Boisse; S. Hanklar Analysis of the mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests, Comput. Mater. Sci., Volume 17 (2000) no. 1, pp. 7-20

[8] S.V. Lomov; I. Verpoest Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements, Compos. Sci. Technol., Volume 66 (2006) no. 7–8, pp. 919-933

[9] A. Wendling; G. Hivet; E. Vidal-Sallé; P. Boisse Consistent geometrical modelling of interlock fabrics, 90 Finite Elements in Analysis and Design, 2014, pp. 93-105

[10] P. Badel; E. Vidal-Sallé; E. Maire; P. Boisse Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale, Compos. Sci. Technol., Volume 68 (2008), pp. 2433-2440

[11] S.V. Lomov; D.S. Ivanov; I. Verpoest; M. Zako; T. Kurashiki; H. Nakai; S. Hirosawa Meso-FE modelling of textile composites: road map, data flow and algorithms, Compos. Sci. Technol., Volume 67 (2007) no. 9, pp. 1870-1891

[12] S.V. Lomov Virtual testing for material formability (A. Long, ed.), Composite Forming Technologies, Woodhead, Cambridge, 2007, pp. 80-116

[13] Renaud G. Rinaldi; Matthew Blacklock; Hrishikesh Bale; Matthew R. Begley; Brian N. Cox Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations, J. Mech. Phys. Solids, Volume 60 (2012) no. 8, pp. 1561-1581

[14] D. Durville Simulation of the mechanical behaviour of woven fabrics at the scale of fibers, Int. J. Mater. Form., Volume 3 (2010) no. 2, pp. 1241-1251

[15] I. Verpoest; S.V. Lomov Virtual textile composites software WiseTex: integration with micro-mechanical, permeability and structural analysis, Compos. Sci. Technol., Volume 65 (2005) no. 15–16 spec. iss., pp. 2563-2574

[16] S.V. Lomov; G. Huysmans; I. Verpoest Hierarchy of textile structures and architecture of fabric geometric models, Tex. Res. J., Volume 71 (2001) no. 6, pp. 534-543

[17] M. Sherburn Texgen open source project http://texgen.sourceforge.net/index.php/main_page

[18] Wisetex http://www.mtm.kuleuven.be/onderzoek/composites/software/wisetexis#

[19] S.V. Lomov; I. Verpoest Compression of woven reinforcements: a mathematical model, J. Reinf. Plast. Compos., Volume 19 (2000) no. 16, pp. 1329-1350

[20] P. Badel; E. Vidal-Sallé; P. Boisse Large deformation analysis of fibrous materials using rate constitutive equation, Comput. Struct., Volume 86 (2008) no. 11–12, pp. 1164-1175

[21] A. Rassineux 3D mesh adaptation. Optimization of tetrahedral meshes by advancing front technique, Comput. Methods Appl. Mech. Eng., Volume 141 (1997) no. 3–4, pp. 335-354

[22] Franco P. Preparata; Michael I. Shamos Computational Geometry: An Introduction, Springer-Verlag New York, Inc., New York, NY, USA, 1985

[23] G. Hivet; P. Boisse Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension, Composites, Part B, Eng., Volume 39 (2008) no. 2, pp. 345-361

[24] P. Frey; P.-L. Georges Mesh Generation, Wiley–ISTE, April 2008 (848 pages) (ISBN: 978-1-84821-029-5)

[25] C. Labergère; A. Rassineux; K. Saanouni Numerical simulation of continuous damage and fracture in metal-forming processes with 2D mesh adaptive methodology, 82 Finite Elements in Analysis and Design, 2014, pp. 46-61

[26] Ch. El Hage; R. Younès; Z. Aboura; M.L. Benzeggagh; M. Zoaeter Analytical and numerical modeling of mechanical properties of orthogonal 3D CFRP, Compos. Sci. Technol., Volume 69 (2009) no. 1, pp. 111-116

[27] H.L. De Cougny; M.S. Shephard Surface meshing using vertex insertion, 5th International Meshing Roundtable, Sandia National Laboratories, October 1996 , pp. 243-256

  • Agniprobho Mazumder; Li Zheng; Yang Jiao; Todd Bullions; Yong Yu; Youqi Wang Predictive modeling of 3D textile composites using realistic micromechanical representations, Composites Part B: Engineering, Volume 279 (2024), p. 111441 | DOI:10.1016/j.compositesb.2024.111441
  • Yawei Zhang; Weikang liu; Zhiwei Gui; Shenhua Zhou; Zhida Ren Damage mechanisms of 2.5D SiO2f/SiO2 woven ceramic matrix composites under compressive impact, Ceramics International, Volume 49 (2023) no. 6, p. 9203 | DOI:10.1016/j.ceramint.2022.11.083
  • Zhi-Yong Wu; Yuan Fu; Hui Guo; Li-Min Xu; He-Jin Gu; Xiang-Ping Chen; Jin Liu A multiscale homogenization iterative algorithm of 2D orthogonal prepreg carbon/aramid/epoxy woven-ply, Journal of Thermoplastic Composite Materials, Volume 36 (2023) no. 12, p. 5052 | DOI:10.1177/08927057231174211
  • Yifan Zhang; Jian Tong; Qiwei Guo; Junhua Guo; Xiaozhi Liu; Li Chen Hierarchical multiscale analysis for 3D woven composite leaf spring landing gear, Thin-Walled Structures, Volume 189 (2023), p. 110913 | DOI:10.1016/j.tws.2023.110913
  • Alain Rassineux Robust conformal adaptive meshing of complex textile composites unit cells, Composite Structures, Volume 279 (2022), p. 114740 | DOI:10.1016/j.compstruct.2021.114740
  • Agniprobho Mazumder; Qibang Liu; Youqi Wang; Chian-Fong Yen A non-linear material model for progressive damage analysis of woven composites using a conformal meshing framework, Journal of Composite Materials, Volume 56 (2022) no. 21, p. 3323 | DOI:10.1177/00219983221113615
  • Martin Hirsekorn Multiscale modelling and experimental observation of transverse tow cracking and debonding in textile composites, Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites (2021), p. 379 | DOI:10.1016/b978-0-12-818984-9.00013-5
  • Agniprobho Mazumder; Youqi Wang; Chian-Fong Yen A structured method to generate conformal FE mesh for realistic textile composite micro-geometry, Composite Structures, Volume 239 (2020), p. 112032 | DOI:10.1016/j.compstruct.2020.112032
  • Mikhail Y. Matveev; Louise P. Brown; Andrew C. Long Efficient meshing technique for textile composites unit cells of arbitrary complexity, Composite Structures, Volume 254 (2020), p. 112757 | DOI:10.1016/j.compstruct.2020.112757
  • Mingming Xu; Elena Sitnikova; Shuguang Li Unification and parameterisation of 2D and 3D weaves and the formulation of a unit cell for composites made of such preforms, Composites Part A: Applied Science and Manufacturing, Volume 133 (2020), p. 105868 | DOI:10.1016/j.compositesa.2020.105868
  • Yuguo Wang; Haoji Wang; Jinhua Wei; Bin Lin; Jingyu Xu; Sheng Fang Finite element analysis of grinding process of long fiber reinforced ceramic matrix woven composites: Modeling, experimental verification and material removal mechanism, Ceramics International, Volume 45 (2019) no. 13, p. 15920 | DOI:10.1016/j.ceramint.2019.05.100
  • Nadine Jendrysik; Konrad Schneider; Swantje Bargmann Automatic generation and discretization of fully periodic representative volume elements of plain woven composites, Journal of Composite Materials, Volume 52 (2018) no. 29, p. 4061 | DOI:10.1177/0021998318774403
  • Y Sinchuk; Y Pannier; M Gueguen; M Gigliotti Image-based modeling of moisture-induced swelling and stress in 2D textile composite materials using a global-local approach, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Volume 232 (2018) no. 8, p. 1505 | DOI:10.1177/0954406217736789
  • Anna Madra; Piotr Breitkopf; Alain Rassineux; François Trochu Image‐based model reconstruction and meshing of woven reinforcements in composites, International Journal for Numerical Methods in Engineering, Volume 112 (2017) no. 9, p. 1235 | DOI:10.1002/nme.5555

Cité par 14 documents. Sources : Crossref

Commentaires - Politique