We present a new numerical methodology to build a Representative Volume Element (RVE) of a wide range of 3D woven composites in order to determine the mechanical behavior of the fabric unit cell by a mesoscopic approach based on a 3D finite element analysis. Emphasis is put on the numerous difficulties of creating a mesh of these highly complex weaves embedded in a resin. A conforming mesh at the numerous interfaces between yarns is created by a multi-quadtree adaptation technique, which makes it possible thereafter to build an unstructured 3D mesh of the resin with tetrahedral elements. The technique is not linked with any specific tool, but can be carried out with the use of any 2D and 3D robust mesh generators.
Accepted:
Published online:
Manh Hung Ha 1; Ludovic Cauvin 1; Alain Rassineux 1
@article{CRMECA_2016__344_4-5_267_0, author = {Manh Hung Ha and Ludovic Cauvin and Alain Rassineux}, title = {A methodology to mesh mesoscopic representative volume element of {3D} interlock woven composites impregnated with resin}, journal = {Comptes Rendus. M\'ecanique}, pages = {267--283}, publisher = {Elsevier}, volume = {344}, number = {4-5}, year = {2016}, doi = {10.1016/j.crme.2015.09.008}, language = {en}, }
TY - JOUR AU - Manh Hung Ha AU - Ludovic Cauvin AU - Alain Rassineux TI - A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin JO - Comptes Rendus. Mécanique PY - 2016 SP - 267 EP - 283 VL - 344 IS - 4-5 PB - Elsevier DO - 10.1016/j.crme.2015.09.008 LA - en ID - CRMECA_2016__344_4-5_267_0 ER -
%0 Journal Article %A Manh Hung Ha %A Ludovic Cauvin %A Alain Rassineux %T A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin %J Comptes Rendus. Mécanique %D 2016 %P 267-283 %V 344 %N 4-5 %I Elsevier %R 10.1016/j.crme.2015.09.008 %G en %F CRMECA_2016__344_4-5_267_0
Manh Hung Ha; Ludovic Cauvin; Alain Rassineux. A methodology to mesh mesoscopic representative volume element of 3D interlock woven composites impregnated with resin. Comptes Rendus. Mécanique, Computational simulation of manufacturing processes, Volume 344 (2016) no. 4-5, pp. 267-283. doi : 10.1016/j.crme.2015.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.09.008/
[1] Mechanical behavior of 3D woven composites, Mater. Des., Volume 67 (2015), pp. 261-271
[2] A contribution to the analysis of the intrinsic shear behaviour of fabrics, J. Compos. Mater., Volume 45 (2011) no. 6, pp. 695-717
[3] A new generation of 3D composite materials: advantage and disadvantage, Damage and Fracture Mechanics: Failure Analysis of Engineering Materials and Structures, 2009, pp. 473-483
[4] Optical strain fields in shear and tensile testing of textile reinforcements, Compos. Sci. Technol., Volume 68 (2008), pp. 807-819
[5] Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test, Compos. Sci. Technol., Volume 68 (2008) no. 12, pp. 2340-2349
[6] Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results, Composites, Part A, Appl. Sci. Manuf., Volume 39 (2008) no. 6, pp. 1037-1053
[7] Analysis of the mechanical behaviour of dry fabric reinforcements. 3D simulations versus biaxial tests, Comput. Mater. Sci., Volume 17 (2000) no. 1, pp. 7-20
[8] Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements, Compos. Sci. Technol., Volume 66 (2006) no. 7–8, pp. 919-933
[9] Consistent geometrical modelling of interlock fabrics, 90 Finite Elements in Analysis and Design, 2014, pp. 93-105
[10] Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale, Compos. Sci. Technol., Volume 68 (2008), pp. 2433-2440
[11] Meso-FE modelling of textile composites: road map, data flow and algorithms, Compos. Sci. Technol., Volume 67 (2007) no. 9, pp. 1870-1891
[12] Virtual testing for material formability (A. Long, ed.), Composite Forming Technologies, Woodhead, Cambridge, 2007, pp. 80-116
[13] Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations, J. Mech. Phys. Solids, Volume 60 (2012) no. 8, pp. 1561-1581
[14] Simulation of the mechanical behaviour of woven fabrics at the scale of fibers, Int. J. Mater. Form., Volume 3 (2010) no. 2, pp. 1241-1251
[15] Virtual textile composites software WiseTex: integration with micro-mechanical, permeability and structural analysis, Compos. Sci. Technol., Volume 65 (2005) no. 15–16 spec. iss., pp. 2563-2574
[16] Hierarchy of textile structures and architecture of fabric geometric models, Tex. Res. J., Volume 71 (2001) no. 6, pp. 534-543
[17] Texgen open source project http://texgen.sourceforge.net/index.php/main_page
[18] Wisetex http://www.mtm.kuleuven.be/onderzoek/composites/software/wisetexis#
[19] Compression of woven reinforcements: a mathematical model, J. Reinf. Plast. Compos., Volume 19 (2000) no. 16, pp. 1329-1350
[20] Large deformation analysis of fibrous materials using rate constitutive equation, Comput. Struct., Volume 86 (2008) no. 11–12, pp. 1164-1175
[21] 3D mesh adaptation. Optimization of tetrahedral meshes by advancing front technique, Comput. Methods Appl. Mech. Eng., Volume 141 (1997) no. 3–4, pp. 335-354
[22] Computational Geometry: An Introduction, Springer-Verlag New York, Inc., New York, NY, USA, 1985
[23] Consistent mesoscopic mechanical behaviour model for woven composite reinforcements in biaxial tension, Composites, Part B, Eng., Volume 39 (2008) no. 2, pp. 345-361
[24] Mesh Generation, Wiley–ISTE, April 2008 (848 pages) (ISBN: 978-1-84821-029-5)
[25] Numerical simulation of continuous damage and fracture in metal-forming processes with 2D mesh adaptive methodology, 82 Finite Elements in Analysis and Design, 2014, pp. 46-61
[26] Analytical and numerical modeling of mechanical properties of orthogonal 3D CFRP, Compos. Sci. Technol., Volume 69 (2009) no. 1, pp. 111-116
[27] Surface meshing using vertex insertion, 5th International Meshing Roundtable, Sandia National Laboratories, October 1996 , pp. 243-256
Cited by Sources:
Comments - Policy