Comptes Rendus
A simple and effective axisymmetric convected Helmholtz integral equation
Comptes Rendus. Mécanique, Volume 343 (2015) no. 9, pp. 457-470.

In this paper, we develop an axisymmetric boundary integral equation that derives from a reformulation of the 3D Helmholtz integral formula for the acoustic radiation problems in a subsonic uniform flow. Through the use of a new non-standard derivative operator, the axisymmetric convected Helmholtz integral equation substantially reduces the effects of flow incorporated in the classical convected boundary integral formulations, and involved in the normal derivative and the derivative in the flow direction of the axisymmetric convected Green's function. As for the free term derived from the singular integrals, it is given by a new expression independent of complete elliptic integrals and evaluated analytically as a convected angle in the meridian plane. The numerical treatment of singular integrals requires only the use of standard Gauss quadrature rules. Different test cases are presented.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.07.001
Mots clés : Axisymmetric, Axisymmetric convected Green's function, Convected boundary integral formulation, Weakly singular integrals, Monopole source in a uniform flow
Mohamed Beldi 1 ; Bassem Barhoumi 1

1 MAI Laboratory, University Tunis El Manar II, BP 37, Campus universitaire El-Manar, 2092 El Manar, Tunisia
@article{CRMECA_2015__343_9_457_0,
     author = {Mohamed Beldi and Bassem Barhoumi},
     title = {A simple and effective axisymmetric convected {Helmholtz} integral equation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {457--470},
     publisher = {Elsevier},
     volume = {343},
     number = {9},
     year = {2015},
     doi = {10.1016/j.crme.2015.07.001},
     language = {en},
}
TY  - JOUR
AU  - Mohamed Beldi
AU  - Bassem Barhoumi
TI  - A simple and effective axisymmetric convected Helmholtz integral equation
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 457
EP  - 470
VL  - 343
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2015.07.001
LA  - en
ID  - CRMECA_2015__343_9_457_0
ER  - 
%0 Journal Article
%A Mohamed Beldi
%A Bassem Barhoumi
%T A simple and effective axisymmetric convected Helmholtz integral equation
%J Comptes Rendus. Mécanique
%D 2015
%P 457-470
%V 343
%N 9
%I Elsevier
%R 10.1016/j.crme.2015.07.001
%G en
%F CRMECA_2015__343_9_457_0
Mohamed Beldi; Bassem Barhoumi. A simple and effective axisymmetric convected Helmholtz integral equation. Comptes Rendus. Mécanique, Volume 343 (2015) no. 9, pp. 457-470. doi : 10.1016/j.crme.2015.07.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.001/

[1] F. Casenave; A. Ern; G. Sylvand Coupled BEM–FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain, Comput. Phys., Volume 257 (2014), pp. 627-644

[2] N. Balin, F. Casenave, F. Dubois, E. Duceau, S. Duprey, I. Terrasse, Boundary element and finite element coupling for aeroacoustics simulations, Research Report Airbus 2014, HAL id: hal-00944696.

[3] T.-W. Wu; L. Lee A direct boundary integral formulation for acoustic radiation in a subsonic uniform flow, J. Sound Vib., Volume 175 (1994), pp. 51-63

[4] M. Beldi; A. Maghrebi Some new results for the study of acoustic radiation within a uniform subsonic flow using boundary integral method, Adv. Mater. Res., Volume 488–489 (2012), pp. 383-395

[5] A.F. Seybert; B. Soenarko; F.J. Rizzo; D.J. Shippy A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions, J. Acoust. Soc. Amer., Volume 80 (1986), pp. 1241-1247

[6] P.M. Juhl Axisymmetric integral formulation for non-axisymmetric boundary conditions, The Acoustics Laboratory, Technical University of Denmark, 1991 (Report no. 47)

[7] W. Wang; N. Atalla; J. Nicolas A boundary integral approach for acoustic radiation of axisymmetric bodies with arbitrary boundary conditions valid for all wave numbers, J. Acoust. Soc. Amer., Volume 101 (1997), pp. 1468-1478

[8] M. Carley The sound field of a rotor in stationary duct, J. Sound Vib., Volume 259 (2003), pp. 1067-1079

[9] P.M. Juhl An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses, J. Acoust. Soc. Amer., Volume 135 (2013), pp. 3409-3418

[10] P. Zhang; T.-W. Wu; L. Lee A coupled FEM/BEM formulation for acoustic radiation in a subsonic non-uniform flow, J. Sound Vib., Volume 206 (1997), pp. 309-326

[11] P. Juhl Non-axisymmetric acoustics propagation in and radiation from lined ducts in a subsonic uniform mean flow: an axisymmetric boundary element formulation, Acta Acust. Acust., Volume 86 (2000), pp. 860-869

[12] M. Bonnet Boundary Integral Equation Methods for Solids and Fluids, John Wiley and Sons, 1999

[13] M. Guiggiani; A. Gigante A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method, Appl. Mech., Volume 57 (1990), pp. 906-915

[14] G.P. Lennon; P.L.-F. Liu; J.A. Liggett Boundary integral equation solution to axisymmetric potential flows, Water Resour. Res., Volume 15 (1979), pp. 1102-1106

[15] M. Abramowitz; I.-A. Stegun Handbook of Mathematical Functions, Dover, New York, 1972

[16] F. Toshio Fast computation of complete elliptic integrals and Jacobian elliptic functions, Celest. Mech. Dyn. Astron., Volume 105 (2009), pp. 305-328

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Direct numerical simulation of the interaction of isotropic turbulence with a shock wave using shock-fitting

Jörn Sesterhenn; Jean-François Dohogne; Rainer Friedrich

C. R. Méca (2005)


Progress and challenges in swirling flame dynamics

Sébastien Candel; Daniel Durox; Thierry Schuller; ...

C. R. Méca (2012)


Some useful hybrid approaches for predicting aerodynamic noise

Christophe Bailly; Christophe Bogey; Xavier Gloerfelt

C. R. Méca (2005)