Comptes Rendus
Discrete simulation of fluid dynamics
Simulation of liquid–vapour phase separation on GPUs using Lattice Boltzmann models with off-lattice velocity sets
Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 580-588.

We use a two-dimensional Lattice Boltzmann model to investigate the liquid–vapour phase separation in an isothermal van der Waals fluid. The model is based on the expansion of the distribution function up to the third order in terms of Hermite polynomials. In two dimensions, this model is an off-lattice one and has 16 velocities. The Corner Transport Upwind Scheme is used to evolve the corresponding distribution functions on a square lattice. The resulting code allows one to follow the liquid–vapour phase separation on lattices up to 4096×4096 nodes using a Tesla M2090 Graphics Processing Unit.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.07.011
Keywords: Lattice Boltzmann, Corner transport upwind, Phase separation

Tonino Biciuşcă 1, 2; Adrian Horga 1, 3; Victor Sofonea 1

1 Center for Fundamental and Advanced Technical Research, Romanian Academy, Bd. Mihai Viteazul 24, 300223 Timişoara, Romania
2 Department of Physics, West University of Timişoara, Bd. Vasile Pârvan 4, 300223 Timişoara, Romania
3 Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
@article{CRMECA_2015__343_10-11_580_0,
     author = {Tonino Biciu\c{s}c\u{a} and Adrian Horga and Victor Sofonea},
     title = {Simulation of liquid{\textendash}vapour phase separation on {GPUs} using {Lattice} {Boltzmann} models with off-lattice velocity sets},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {580--588},
     publisher = {Elsevier},
     volume = {343},
     number = {10-11},
     year = {2015},
     doi = {10.1016/j.crme.2015.07.011},
     language = {en},
}
TY  - JOUR
AU  - Tonino Biciuşcă
AU  - Adrian Horga
AU  - Victor Sofonea
TI  - Simulation of liquid–vapour phase separation on GPUs using Lattice Boltzmann models with off-lattice velocity sets
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 580
EP  - 588
VL  - 343
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2015.07.011
LA  - en
ID  - CRMECA_2015__343_10-11_580_0
ER  - 
%0 Journal Article
%A Tonino Biciuşcă
%A Adrian Horga
%A Victor Sofonea
%T Simulation of liquid–vapour phase separation on GPUs using Lattice Boltzmann models with off-lattice velocity sets
%J Comptes Rendus. Mécanique
%D 2015
%P 580-588
%V 343
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2015.07.011
%G en
%F CRMECA_2015__343_10-11_580_0
Tonino Biciuşcă; Adrian Horga; Victor Sofonea. Simulation of liquid–vapour phase separation on GPUs using Lattice Boltzmann models with off-lattice velocity sets. Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 580-588. doi : 10.1016/j.crme.2015.07.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.011/

[1] X. Shan; X. He Phys. Rev. Lett., 80 (1998), p. 65

[2] X. Shan; X. Yuan; H. Chen J. Fluid Mech., 550 (2006), p. 413

[3] B. Piaud; S. Blanco; R. Fournier; V.E. Ambrus; V. Sofonea Int. J. Mod. Phys. C, 25 (2014), p. 1340016

[4] V.E. Ambruş; V. Sofonea Phys. Rev. E, 86 (2012)

[5] V.E. Ambruş; V. Sofonea Phys. Rev. E, 89 (2014)

[6] F.B. Hildebrand Introduction to Numerical Analysis, Dover Publications, New York, 1987

[7] S. Chen; G.D. Doolen Annu. Rev. Fluid Mech., 30 (1998), p. 329

[8] S. Succi The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford, 2001

[9] M.C. Sukop; D.T. Thorne Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, Springer, Berlin, 2006

[10] X. Shan Phys. Rev., 77 (2008)

[11] V. Sofonea; A. Lamura; G. Gonnella; A. Cristea Phys. Rev. E, 70 (2004)

[12] A. Cristea; G. Gonnella; A. Lamura; V. Sofonea Commun. Comput. Phys., 7 (2010), p. 350

[13] X. He; X. Shan; G. Doolen Phys. Rev. E, 57 (1998)

[14] R.R. Nourgaliev; T.N. Dinh; T.G. Theofanous; D. Joseph Int. J. Multiph. Flow, 29 (2003), p. 117

[15] L.S. Luo Phys. Rev. E, 62 (2000), p. 4982

[16] X. He; G.D. Doolen J. Stat. Phys., 107 (2002), p. 309

[17] B.T. Nadiga; S. Zaleski Eur. J. Mech. B, Fluids, 15 (1996), p. 885

[18] X. Shan; H. Chen Phys. Rev. E, 47 (1993), p. 1815

[19] L. Chen; Q. Kang; Y. Mu; Y.L. He; W.Q. Tao Int. J. Heat Mass Transf., 76 (2014), p. 210

[20] S. Khajepor; J. Wen; B. Chen Phys. Rev. E, 91 (2015)

[21] V.E. Ambruş; V. Sofonea Int. J. Mod. Phys. C, 25 (2014)

[22] S.H. Kim; H. Pitsch; I.S. Boyd J. Comput. Phys., 2008 (2008), p. 8655

[23] J.P. Meng; Y.H. Zhang J. Comput. Phys., 230 (2011), p. 835

[24] J.P. Meng; Y.H. Zhang Phys. Rev. E, 83 (2011)

[25] Y. Shi; P.L. Brookes; Y.W. Yap; J.E. Sader Phys. Rev. E, 83 (2011)

[26] M.O. Deville; T.B. Gatski Mathematical Modeling for Complex Fluids and Flows, Springer, Berlin, 2012

[27] P.C. Philippi; L.A. Hegele; L.O.E. dos Santos; R. Surmas Phys. Rev. E, 73 (2006)

[28] D.N. Siebert; L.A. Hegele; P.C. Philippi Phys. Rev. E, 77 (2008)

[29] R. Surmas; C.E. Pico Ortiz; P.C. Philippi Eur. Phys. J. Spec. Top., 171 (2009), p. 81

[30] S.S. Chikatamarla; I.V. Karlin Phys. Rev. E, 79 (2009)

[31] W.P. Yudistiawan; S. Ansumali; I.V. Karlin Phys. Rev. E, 78 (2008)

[32] W.P. Yudistiawan; S.K. Kwak; D.V. Patil; S. Ansumali Phys. Rev. E, 82 (2010)

[33] X.Y. He Int. J. Mod. Phys. C, 8 (1997), p. 737

[34] X.D. Niu; C. Shu; Y.T. Chew; T.G. Wang J. Stat. Phys., 117 (2004), p. 665

[35] A. Cristea; V. Sofonea Int. J. Mod. Phys. C, 14 (2003), p. 1251

[36] V. Sofonea J. Comput. Phys., 228 (2009), p. 6107

[37] P. Colella J. Comput. Phys., 87 (1990), p. 171

[38] R.J. Leveque SIAM J. Numer. Anal., 33 (1996), p. 627

[39] R.J. Leveque Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2001

[40] J.A. Trangenstein Numerical Solution of Hyperbolic Partial Differential Equations, Cambridge University Press, Cambridge, 2007

[41] S.K. Godunov Mat. Sb., 47 (1959), p. 271

[42] D.M. Bond; W. Wheatley; M.N. Macrossan; M. Goldsworthy J. Comput. Phys., 259 (2014), p. 175

[43] F. Nannelli; S. Succi J. Stat. Phys., 68 (1992), p. 401

[44] H. Chen Phys. Rev. E, 58 (1998), p. 3955

[45] R. Zhang; H. Chen; Y. Qian; S. Chen Phys. Rev. E, 63 (2001)

[46] M. Sbragaglia; K. Sugiyama Phys. Rev. E, 82 (2010)

[47] S. Leclaire; M. El-Hachem; J.Y. Trepanier; M. Reggio J. Sci. Comput., 59 (2014), p. 545

[48] M. Patra; M. Karttunen Numer. Methods Partial Differ. Equ., 22 (2006), p. 936

[49] K.K. Mattila; L.A. Hegele; P.C. Philippi Sci. World J., 2014 (2014), p. 142907

[50] D.N. Siebert; P.C. Philippi; K.K. Mattila Phys. Rev. E, 90 (2014)

[51] R. Farber CUDA Application Design and Development, Morgan Kaufmann, Waltham, 2011

[52] J. Cheng; M. Grossman; T. McKercher Professional CUDA C Programming, John Wiley and Sons, Inc., Indianapolis, 2014

[53] CUDA C Programming Guide http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[54] K. Michielsen; H. De Raedt Phys. Rep., 347 (2001), p. 461

[55] K.R. Mecke; V. Sofonea Phys. Rev. E, 56 (1997)

[56] V. Sofonea; K.R. Mecke Eur. Phys. J. B, 8 (1999), p. 99

[57] Y. Gan; A. Xu; G. Zhang; Y. Li; H. Li Phys. Rev. E, 84 (2011)

Cited by Sources:

Comments - Policy