We use a two-dimensional Lattice Boltzmann model to investigate the liquid–vapour phase separation in an isothermal van der Waals fluid. The model is based on the expansion of the distribution function up to the third order in terms of Hermite polynomials. In two dimensions, this model is an off-lattice one and has 16 velocities. The Corner Transport Upwind Scheme is used to evolve the corresponding distribution functions on a square lattice. The resulting code allows one to follow the liquid–vapour phase separation on lattices up to nodes using a Tesla M2090 Graphics Processing Unit.
Accepted:
Published online:
Tonino Biciuşcă 1, 2; Adrian Horga 1, 3; Victor Sofonea 1
@article{CRMECA_2015__343_10-11_580_0, author = {Tonino Biciu\c{s}c\u{a} and Adrian Horga and Victor Sofonea}, title = {Simulation of liquid{\textendash}vapour phase separation on {GPUs} using {Lattice} {Boltzmann} models with off-lattice velocity sets}, journal = {Comptes Rendus. M\'ecanique}, pages = {580--588}, publisher = {Elsevier}, volume = {343}, number = {10-11}, year = {2015}, doi = {10.1016/j.crme.2015.07.011}, language = {en}, }
TY - JOUR AU - Tonino Biciuşcă AU - Adrian Horga AU - Victor Sofonea TI - Simulation of liquid–vapour phase separation on GPUs using Lattice Boltzmann models with off-lattice velocity sets JO - Comptes Rendus. Mécanique PY - 2015 SP - 580 EP - 588 VL - 343 IS - 10-11 PB - Elsevier DO - 10.1016/j.crme.2015.07.011 LA - en ID - CRMECA_2015__343_10-11_580_0 ER -
%0 Journal Article %A Tonino Biciuşcă %A Adrian Horga %A Victor Sofonea %T Simulation of liquid–vapour phase separation on GPUs using Lattice Boltzmann models with off-lattice velocity sets %J Comptes Rendus. Mécanique %D 2015 %P 580-588 %V 343 %N 10-11 %I Elsevier %R 10.1016/j.crme.2015.07.011 %G en %F CRMECA_2015__343_10-11_580_0
Tonino Biciuşcă; Adrian Horga; Victor Sofonea. Simulation of liquid–vapour phase separation on GPUs using Lattice Boltzmann models with off-lattice velocity sets. Comptes Rendus. Mécanique, Lattice Boltzmann methods for solving problems in mechanics / Méthodes de Boltzmann sur réseau pour la résolution de problèmes de mécanique, Volume 343 (2015) no. 10-11, pp. 580-588. doi : 10.1016/j.crme.2015.07.011. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.011/
[1] Phys. Rev. Lett., 80 (1998), p. 65
[2] J. Fluid Mech., 550 (2006), p. 413
[3] Int. J. Mod. Phys. C, 25 (2014), p. 1340016
[4] Phys. Rev. E, 86 (2012)
[5] Phys. Rev. E, 89 (2014)
[6] Introduction to Numerical Analysis, Dover Publications, New York, 1987
[7] Annu. Rev. Fluid Mech., 30 (1998), p. 329
[8] The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford, 2001
[9] Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, Springer, Berlin, 2006
[10] Phys. Rev., 77 (2008)
[11] Phys. Rev. E, 70 (2004)
[12] Commun. Comput. Phys., 7 (2010), p. 350
[13] Phys. Rev. E, 57 (1998)
[14] Int. J. Multiph. Flow, 29 (2003), p. 117
[15] Phys. Rev. E, 62 (2000), p. 4982
[16] J. Stat. Phys., 107 (2002), p. 309
[17] Eur. J. Mech. B, Fluids, 15 (1996), p. 885
[18] Phys. Rev. E, 47 (1993), p. 1815
[19] Int. J. Heat Mass Transf., 76 (2014), p. 210
[20] Phys. Rev. E, 91 (2015)
[21] Int. J. Mod. Phys. C, 25 (2014)
[22] J. Comput. Phys., 2008 (2008), p. 8655
[23] J. Comput. Phys., 230 (2011), p. 835
[24] Phys. Rev. E, 83 (2011)
[25] Phys. Rev. E, 83 (2011)
[26] Mathematical Modeling for Complex Fluids and Flows, Springer, Berlin, 2012
[27] Phys. Rev. E, 73 (2006)
[28] Phys. Rev. E, 77 (2008)
[29] Eur. Phys. J. Spec. Top., 171 (2009), p. 81
[30] Phys. Rev. E, 79 (2009)
[31] Phys. Rev. E, 78 (2008)
[32] Phys. Rev. E, 82 (2010)
[33] Int. J. Mod. Phys. C, 8 (1997), p. 737
[34] J. Stat. Phys., 117 (2004), p. 665
[35] Int. J. Mod. Phys. C, 14 (2003), p. 1251
[36] J. Comput. Phys., 228 (2009), p. 6107
[37] J. Comput. Phys., 87 (1990), p. 171
[38] SIAM J. Numer. Anal., 33 (1996), p. 627
[39] Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2001
[40] Numerical Solution of Hyperbolic Partial Differential Equations, Cambridge University Press, Cambridge, 2007
[41] Mat. Sb., 47 (1959), p. 271
[42] J. Comput. Phys., 259 (2014), p. 175
[43] J. Stat. Phys., 68 (1992), p. 401
[44] Phys. Rev. E, 58 (1998), p. 3955
[45] Phys. Rev. E, 63 (2001)
[46] Phys. Rev. E, 82 (2010)
[47] J. Sci. Comput., 59 (2014), p. 545
[48] Numer. Methods Partial Differ. Equ., 22 (2006), p. 936
[49] Sci. World J., 2014 (2014), p. 142907
[50] Phys. Rev. E, 90 (2014)
[51] CUDA Application Design and Development, Morgan Kaufmann, Waltham, 2011
[52] Professional CUDA C Programming, John Wiley and Sons, Inc., Indianapolis, 2014
[53] CUDA C Programming Guide http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
[54] Phys. Rep., 347 (2001), p. 461
[55] Phys. Rev. E, 56 (1997)
[56] Eur. Phys. J. B, 8 (1999), p. 99
[57] Phys. Rev. E, 84 (2011)
Cited by Sources:
Comments - Policy