Comptes Rendus
Discrete simulation of fluid dynamics
Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model
Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 571-579.

Rayleigh–Taylor and Kelvin–Helmholtz hydrodynamic instabilities are frequent in many natural and industrial processes, but their numerical simulation is not an easy challenge. This work simulates both instabilities by using a lattice Boltzmann model on multiphase fluids at a liquid-vapour interface, instead of multicomponent systems like the oil–water one. The model, proposed by He, Chen and Zhang (1999) [1] was modified to increase the precision by computing the pressure gradients with a higher order, as proposed by McCracken and Abraham (2005) [2]. The resulting model correctly simulates both instabilities by using almost the same parameter set. It also reproduces the relation γA between the growing rate γ of the Rayleigh–Taylor instability and the relative density difference between the fluids (known as the Atwood number A), but including also deviations observed in experiments at low density differences. The results show that the implemented model is a useful tool for the study of hydrodynamic instabilities, drawing a sharp interface and exhibiting numerical stability for moderately high Reynolds numbers.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.07.014
Mots clés : Lattice Boltzmann, Multiphase flow, Hydrodynamic instabilities, Atwood number
Ali Mauricio Velasco 1 ; José Daniel Muñoz 1

1 Universidad Nacional de Colombia, Physics Department, Colombia
@article{CRMECA_2015__343_10-11_571_0,
     author = {Ali Mauricio Velasco and Jos\'e Daniel Mu\~noz},
     title = {Study of hydrodynamic instabilities with a multiphase lattice {Boltzmann} model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {571--579},
     publisher = {Elsevier},
     volume = {343},
     number = {10-11},
     year = {2015},
     doi = {10.1016/j.crme.2015.07.014},
     language = {en},
}
TY  - JOUR
AU  - Ali Mauricio Velasco
AU  - José Daniel Muñoz
TI  - Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 571
EP  - 579
VL  - 343
IS  - 10-11
PB  - Elsevier
DO  - 10.1016/j.crme.2015.07.014
LA  - en
ID  - CRMECA_2015__343_10-11_571_0
ER  - 
%0 Journal Article
%A Ali Mauricio Velasco
%A José Daniel Muñoz
%T Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model
%J Comptes Rendus. Mécanique
%D 2015
%P 571-579
%V 343
%N 10-11
%I Elsevier
%R 10.1016/j.crme.2015.07.014
%G en
%F CRMECA_2015__343_10-11_571_0
Ali Mauricio Velasco; José Daniel Muñoz. Study of hydrodynamic instabilities with a multiphase lattice Boltzmann model. Comptes Rendus. Mécanique, Volume 343 (2015) no. 10-11, pp. 571-579. doi : 10.1016/j.crme.2015.07.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.07.014/

[1] X. He; S. Chen; R. Zhang A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability, J. Comput. Phys., Volume 152 (1999), p. 642

[2] M. McCracken; J. Abraham Multiple-relaxation-time lattice-Boltzmann model for multiphase flow, Phys. Rev. E, Volume 71 (2005)

[3] X. Shan; H. Chen Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, Volume 47 (1993), p. 1815

[4] X. He; X. Shan; G. Doolen Discrete Boltzmann equation model for nonideal gases, Phys. Rev. E, Volume 57 (1998)

[5] X. He; G. Doolen Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows, J. Stat. Phys., Volume 107 (2002), p. 309

[6] A. Xu; G. Zhang; Y. Gan; F. Chen; X. Yu Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys., Volume 7 (2012) no. 5, p. 582

[7] P. Bhatnagar; E. Gross; M. Krook A model for collision process in gases. I. Small amplitude processes in charged an neutral one component system, Phys. Rev., Volume 94 (1954), p. 511

[8] Paulo C. Philippi; Luiz A. Hegele; Luís O.E. dos Santos; Rodrigo Surmas From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models, Phys. Rev. E, Volume 73 (2006)

[9] N. Martys A BBGKY-based density gradient approximation of interparticle forces: application for discrete Boltzmann methods, Physica A, Volume 362 (2006), p. 57

[10] B. Boghosian; J. Yepez; P. Coveney; A. Wager Entropic lattice Boltzmann methods, Proc. R. Soc. Lond. A, Volume 457 (2001), p. 717

[11] A. Wagner Thermodynamic consistency of liquid-gas lattice Boltzmann simulations, Phys. Rev. E, Volume 74 (2006)

[12] D.N. Siebert; P.C. Philippi; K.K. Mattila Consistent lattice Boltzmann equations for phase transitions, Phys. Rev. E, Volume 90 (2014)

[13] S. Chandrasekhar, Oxford University Press, Oxford, UK (1961), p. 445

[14] P. Drazin (Cambridge Text in Applied Mathematics) (2002), p. 51

[15] B. Akula; M. Andrews; D. Ranjan Effect of shear on Rayleigh–Taylor mixing at small Atwood number, Phys. Rev. E, Volume 87 (2013)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

The Bjerknes instability during crystal nucleation by acoustic waves

Martine Ben Amar

C. R. Méca (2004)


Ablative Rayleigh–Taylor instability in the limit of an infinitely large density ratio

Paul Clavin; Christophe Almarcha

C. R. Méca (2005)


Five-coordinate Schiff base complexes of gallium. Potential catalysts for the copolymerization of carbon dioxide and epoxides

Donald J. Darensbourg; Damon R. Billodeaux

C. R. Chim (2004)