Comptes Rendus
On a singularly perturbed Steklov problem in a domain perforated along the boundary
Comptes Rendus. Mécanique, Volume 344 (2016) no. 1, pp. 12-18.

We study the asymptotic behavior of solutions and eigenelements to a boundary value problem for the Laplace equation in a domain perforated along part of the boundary. On the boundary of holes, we set the homogeneous Dirichlet boundary condition and the Steklov spectral condition on the mentioned part of the outer boundary of the domain. Assuming that the boundary microstructure is periodic, we construct the limit problem and prove the homogenization theorem.

Nous étudions le comportement asymptotique des solutions et des éléments propres à un problème aux limites pour l'équation de Laplace dans un domaine perforé le long d'une partie de la frontière. Sur la frontière de trous, nous posons la condition de Dirichlet homogène et la condition spectrale de Steklov sur la part mentionnée de la frontière extérieure du domaine. En supposant que la microstructure de la frontière est périodique, nous construisons le problème aux limites et prouvons le théorème d'homogénéisation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.09.001
Keywords: Homogenization, Steklov spectral problem, Asymptotic methods
Mot clés : Homogénéisation, Problème spectral de Steklov, Méthodes asymptotiques
Gregory A. Chechkin 1; Ciro D' Apice 2; Umberto De Maio 3; Rustem R. Gadyl'shin 4, 5

1 Department of Differential Equations, Faculty of Mechanics and Mathematics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
2 Dipartimento di Ingegneria dell'Informazione e Matematica Applicata, Università degli Studi di Salerno, Via Ponte don Melillo, 1, Fisciano (SA) 84084, Italia
3 Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli Federico II, Complesso Monte S. Angelo – Edificio “T”, Via Cintia, 80126 Napoli, Italia
4 Department of Mathematics and Statistics, Faculty of Physics and Mathematics, Bashkir State Pedagogical University, Ufa 450000, Russia
5 Department of Mathematical Analysis, Faculty of Mathematics and IT, Bashkir State University, Ufa 450076, Russia
@article{CRMECA_2016__344_1_12_0,
     author = {Gregory A. Chechkin and Ciro D' Apice and Umberto De Maio and Rustem R. Gadyl'shin},
     title = {On a singularly perturbed {Steklov} problem in a domain perforated along the boundary},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {12--18},
     publisher = {Elsevier},
     volume = {344},
     number = {1},
     year = {2016},
     doi = {10.1016/j.crme.2015.09.001},
     language = {en},
}
TY  - JOUR
AU  - Gregory A. Chechkin
AU  - Ciro D' Apice
AU  - Umberto De Maio
AU  - Rustem R. Gadyl'shin
TI  - On a singularly perturbed Steklov problem in a domain perforated along the boundary
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 12
EP  - 18
VL  - 344
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2015.09.001
LA  - en
ID  - CRMECA_2016__344_1_12_0
ER  - 
%0 Journal Article
%A Gregory A. Chechkin
%A Ciro D' Apice
%A Umberto De Maio
%A Rustem R. Gadyl'shin
%T On a singularly perturbed Steklov problem in a domain perforated along the boundary
%J Comptes Rendus. Mécanique
%D 2016
%P 12-18
%V 344
%N 1
%I Elsevier
%R 10.1016/j.crme.2015.09.001
%G en
%F CRMECA_2016__344_1_12_0
Gregory A. Chechkin; Ciro D' Apice; Umberto De Maio; Rustem R. Gadyl'shin. On a singularly perturbed Steklov problem in a domain perforated along the boundary. Comptes Rendus. Mécanique, Volume 344 (2016) no. 1, pp. 12-18. doi : 10.1016/j.crme.2015.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.09.001/

[1] W. Stekloff Sur les problèmes fondamentaux de la physique mathématique, Ann. Sci. Éc. Norm. Super., Volume 19 (1902) no. 3, pp. 191-259 455–490 (in French)

[2] M.E. Pérez On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem, Discrete Contin. Dyn. Syst., Ser. B, Volume 7 (2007) no. 4, pp. 859-883

[3] S.A. Nazarov; J. Taskinen On the spectrum of the Steklov problem in a domain with a peak, Vestn. St. Petersbg. Univ., Ser. 1, Volume 1 (2008), pp. 56-65 (English translation: Vestn. St. Petersbg. Univ., Math. 41 (1) (2008) 45–52)

[4] A.G. Chechkina Convergence of solutions and eigenelements of Steklov type boundary value problems with boundary conditions of rapidly varying type, Probl. Mat. Anal., Volume 42 (2009), pp. 129-143 (English translation: J. Math. Sci. (N.Y.) 162 (3) (2009) 443–458)

[5] V.A. Sadovnichii; A.G. Chechkina On estimate of eigenfunctions to the Steklov-type problem with small parameter in case of limit spectrum degeneration, Ufim. Mat. Zh., Volume 3 (2011) no. 3, pp. 127-139 (English translation: Ufa Math. J. 3 (3) (2011) 122–134)

[6] E. Sánchez-Palencia Boundary value problems in domains containing perforated walls, Paris ( 1980–1981 ), pp. 309-325

[7] A.G. Belyaev Homogenization of mixed boundary value problem for the Poisson equation in a domain perforated along the boundary, Usp. Mat. Nauk, Volume 45 (1990) no. 4, p. 123 (in Russian)

[8] M. Lobo; O.A. Oleinik; M.E. Pérez; T.A. Shaposhnikova On homogenization of solutions of boundary value problems in domains perforated along manifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 25 (1997) no. 3–4, pp. 611-629

[9] G.A. Chechkin; T.P. Chechkina; C. D' Apice; U. De Maio Homogenization in domains randomly perforated along the boundary, Discrete Contin. Dyn. Syst., Ser. B, Volume 12 (2009) no. 4, pp. 713-730

[10] G.A. Chechkin; Yu.O. Koroleva; A. Meidell; L.-E. Persson On the Friedrichs inequality in a domain perforated along the boundary. Homogenization procedure. Asymptotics in parabolic problems, Russ. J. Math. Phys., Volume 16 (2009) no. 1, pp. 1-16

[11] R.R. Gadyl'shin; Yu.O. Koroleva; G.A. Chechkin On the convergence of solutions and eigenelements of a boundary value problem in a domain perforated along the boundary, Differ. Uravn., Volume 46 (2010) no. 5, pp. 665-677 (English translation: Differ. Equ. 46 (5) (2010) 667–680)

[12] G.A. Chechkin; Yu.O. Koroleva; L.-E. Persson; P. Wall A new weighted Friedrichs-type inequality for a perforated domain with a sharp constant, Eurasian Math. J., Volume 2 (2011) no. 1, pp. 81-103

[13] R.R. Gadyl'shin; Yu.O. Koroleva; G.A. Chechkin On the asymptotic behavior of a simple eigenvalue of a boundary value problem in a domain perforated along the boundary, Differ. Uravn., Volume 47 (2011) no. 6, pp. 819-828 (English translation: Differ. Equ. 47 (6) (2011) 822–831)

[14] R.R. Gadyl'shin; D.V. Kozhevnikov; G.A. Chechkin On the spectral problem in a domain perforated along the boundary. Perturbation of multiple eigenvalue, Probl. Mat. Anal., Volume 73 (2013), pp. 31-45 (English translation: J. Math. Sci. (N.Y.) 196 (3) (2014) 276–292)

[15] R.R. Gadyl'shin; D.V. Kozhevnikov Homogenization of the boundary value problem in a domain perforated along a part of the boundary, Probl. Mat. Anal., Volume 75 (2014), pp. 41-60 (English translation: J. Math. Sci. (N.Y.) 198 (6) (2014) 701–723)

[16] V.P. Mikhailov Partial Differential Equations, Mir, Moscow, 1978

[17] V.S. Vladimirov Equazioni della Fisica Matematica, Mir, Moscow, 1987 (in Italian), translated from the fourth Russian edition by Ernest Kozlov

[18] T. Kato Perturbation Theory for Linear Operators, Springer, Heidelberg, Berlin, 1966

[19] M.Sh. Birman; M.Z. Solomyak Spectral Theory of Selfadjoint Operators in Hilbert Space, Mathematics and Its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, The Netherlands, 1987 (translated from Russian)

Cited by Sources:

Comments - Policy