Comptes Rendus
Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes
Comptes Rendus. Mécanique, Volume 344 (2016) no. 4-5, pp. 251-266.

The Arbitrary Lagrangian Eulerian (ALE) formalism is a breakthrough technique in the numerical simulation of the continuous-type roll-forming process. In contrast to the classical Lagrangian approach, the ALE formalism can compute the hopefully stationary state for the entire mill length with definitely effortless set-up tasks thanks to a nearly-stationary mesh. In this paper, advantages of ALE and Lagrangian formalisms are extensively discussed for simulating such continuous-type processes. Through a highly complex industrial application, the ease of use of ALE modelling is illustrated with the in-house code METAFOR. ALE and Lagrangian results are in good agreement with each other.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.02.005
Mots clés : Cold roll forming, Finite element method, ALE formalism, Springback
Yanick Crutzen 1 ; Romain Boman 1 ; Luc Papeleux 1 ; Jean-Philippe Ponthot 1

1 LTAS – Computational Mechanics, University of Liège, 9 allée de la Découverte, B-4000 Liège, Belgium
@article{CRMECA_2016__344_4-5_251_0,
     author = {Yanick Crutzen and Romain Boman and Luc Papeleux and Jean-Philippe Ponthot},
     title = {Lagrangian and arbitrary {Lagrangian} {Eulerian} simulations of complex roll-forming processes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {251--266},
     publisher = {Elsevier},
     volume = {344},
     number = {4-5},
     year = {2016},
     doi = {10.1016/j.crme.2016.02.005},
     language = {en},
}
TY  - JOUR
AU  - Yanick Crutzen
AU  - Romain Boman
AU  - Luc Papeleux
AU  - Jean-Philippe Ponthot
TI  - Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 251
EP  - 266
VL  - 344
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2016.02.005
LA  - en
ID  - CRMECA_2016__344_4-5_251_0
ER  - 
%0 Journal Article
%A Yanick Crutzen
%A Romain Boman
%A Luc Papeleux
%A Jean-Philippe Ponthot
%T Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes
%J Comptes Rendus. Mécanique
%D 2016
%P 251-266
%V 344
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2016.02.005
%G en
%F CRMECA_2016__344_4-5_251_0
Yanick Crutzen; Romain Boman; Luc Papeleux; Jean-Philippe Ponthot. Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes. Comptes Rendus. Mécanique, Volume 344 (2016) no. 4-5, pp. 251-266. doi : 10.1016/j.crme.2016.02.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.02.005/

[1] I. Kacar; F. Ozturk Roll forming applications for automotive industry, Bursa, Turkey (2014), pp. 26-27

[2] W. Cubberly; R. Bakerjian Tool and Manufacturing Engineers Handbook, Society of Manufacturing Engineers, 1989

[3] G. Halmos Roll Forming Handbook, Manufacturing Engineering and Materials Processing, Taylor & Francis, 2010

[4] data Sheet Metal Solutions GmbH COPRA RF http://www.datam.de/en/products-solutions/roll-forming/

[5] METAFOR http://metafor.ltas.ulg.ac.be/ (Website)

[6] J.-P. Ponthot Traitement unifié de la mécanique des milieux continus solides en grandes transformations par la méthode des éléments finis, Université de Liège, Liège, Belgium, 1995 (in French), Ph.D. thesis

[7] Q.V. Bui; R. Boman; L. Papeleux; P. Wouters; R. Kergen; G. Daolio; P. Duroux; P. Flores; A.-M. Habraken; J.-P. Ponthot Springback and twist prediction of roll formed parts, Porto, Portugal (2006), pp. 567-574

[8] M. Sheikh; R. Palavilayil An assessment of finite element software for application to the roll-forming process, J. Mater. Process. Technol., Volume 180 (2006) no. 1, pp. 221-232

[9] T. Dutton; P. Richardson; G. Duffett Simulating the complete forming sequence for a roll formed automotive component using ls-dyna, Bilbao, Spain (2009), pp. 49-55

[10] B. Joo; H. Lee; D. Kim; Y. Moon A study on forming characteristics of roll forming process with high strength steel, NUMISHEET 2011, Volume vol. 1383, AIP Publishing (2011), pp. 1034-1040 | DOI

[11] J. Falsafi; E. Demirci; V. Silberschmidt Numerical study of strain-rate effect in cold rolls forming of steel, J. Phys. Conf. Ser., Volume 451 (2013), pp. 12041-12047 (IOP Publishing)

[12] R. Boman; L. Papeleux; Q.V. Bui; J.-P. Ponthot Application of the arbitrary Lagrangian Eulerian formulation to the numerical simulation of cold roll forming process, J. Mater. Process. Technol., Volume 177 (2006) no. 1, pp. 621-625 | DOI

[13] Q.V. Bui; J.-P. Ponthot Numerical simulation of cold roll-forming processes, J. Mater. Process. Technol., Volume 202 (2008) no. 1–3, pp. 275-282 | DOI

[14] R. Boman; J.-P. Ponthot Continuous roll forming simulation using arbitrary Lagrangian Eulerian formalism, Key Eng. Mater., Volume 473 (2011), pp. 564-571 | DOI

[15] A. Depauw; D. Herisson; R. Boman; R. Kergen Roll forming of ultra high strength steels: progresses in experimental and modelling knowledge, Bilbao, Spain (2009), pp. 101-108

[16] J.-J. Sheu Simulation and optimization of the cold roll-forming process, Materials Processing and Design: Modeling, Simulation and Applications-NUMIFORM 2004-Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, vol. 712, AIP Publishing, 2004, pp. 452-457

[17] M.O. Görtan; D. Vucic; P. Groche; H. Livatyali Roll forming of branched profiles, J. Mater. Process. Technol., Volume 209 (2009) no. 17, pp. 5837-5844

[18] L. Galdos; J. Larrañaga; L. Uncilla; H. Lete; G. Arrizabalaga Process simulation and experimental tests of cold roll forming of a u-channel made of different ultra high strength steel, Bilbao, Spain (2009), pp. 75-82

[19] J. Paralikas; K. Salonitis; G. Chryssolouris Investigation of the roll forming flower design techniques on main redundant deformations on symmetrical profiles from AHSS, Bilbao, Spain (2009), pp. 83-91

[20] J. Paralikas; K. Salonitis; G. Chryssolouris Optimization of roll forming process parameters—a semi-empirical approach, Int. J. Adv. Manuf. Technol., Volume 47 (2010) no. 9–12, pp. 1041-1052

[21] A. Abvabi; B. Rolfe; J. Larranaga; L. Glados; C. Yang; M. Weiss Using the solid-shell element to model the roll forming of large radii profiles, Steel Research Journal: Proceedings of the 14th International Conference on Metal Forming, Wiley, 2012, pp. 711-714

[22] J. Wiebenga; M. Weiss; B. Rolfe; A. Van Den Boogaard Product defect compensation by robust optimization of a cold roll forming process, J. Mater. Process. Technol., Volume 213 (2013) no. 6, pp. 978-986

[23] P. Groche; C. Mueller; T. Traub; K. Butterweck Experimental and numerical determination of roll forming loads, Steel Res. Int., Volume 85 (2014) no. 1, pp. 112-122 | DOI

[24] data M Sheet Metal Solutions GmbH COPRA FEA RF http://www.datam.de/en/products-solutions/simulation-with-fea/

[25] J. Chung; G.M. Hulbert A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. Appl. Mech., Volume 60 (1993) no. 2, pp. 371-375 | DOI

[26] J. Donea; A. Huerta; J.-P. Ponthot; A. Rodríguez-Ferran, John Wiley & Sons, Ltd (2004), pp. 413-437 (Ch. 14) | DOI

[27] D.J. Benson An efficient, accurate, simple ALE method for nonlinear finite element programs, Comput. Methods Appl. Mech. Eng., Volume 72 (1989) no. 3, pp. 305-350

[28] R. Boman; J.-P. Ponthot Efficient ALE mesh management for 3D quasi-Eulerian problems, Int. J. Numer. Methods Eng., Volume 92 (2012) no. 10, pp. 857-890 | DOI

[29] R. Boman; J.-P. Ponthot Finite element simulation of lubricated contact in rolling using the arbitrary Lagrangian–Eulerian formulation, Comput. Methods Appl. Mech. Eng., Volume 193 (2004) no. 39, pp. 4323-4353 | DOI

[30] D.J. Benson Momentum advection on unstructured staggered quadrilateral meshes, Int. J. Numer. Methods Eng., Volume 75 (2008) no. 13, pp. 1549-1580

[31] R. Boman; J.-P. Ponthot Enhanced ALE data transfer strategy for explicit and implicit thermomechanical simulations of high-speed processes, Int. J. Impact Eng., Volume 53 (2013), pp. 62-73 | DOI

[32] J. Reinders Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism, O'Reilly Media, Inc., 2007

[33] L. Dagum; R. Menon OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng., Volume 5 (1998) no. 1, pp. 46-55

[34] A. Kuzmin; M. Luisier; O. Schenk Fast methods for computing selected elements of the Green's function in massively parallel nanoelectronic device simulations, Euro-Par 2013 Parallel Processing, Springer, 2013, pp. 533-544

[35] O. Schenk; K. Gärtner Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst., Volume 20 (2004) no. 3, pp. 475-487

[36] P. Flores Development of experimental equipment and identification procedures for sheet metal constitutive laws, University of Liège, 2005 (Ph.D. thesis)

[37] P. Flores; A.-M. Habraken Material identification of dual phase steel DP1000, University of Liège, 2005 (Tech. rep.)

[38] Q.V. Bui; L. Papeleux; J.-P. Ponthot Numerical simulation of springback using enhanced assumed strain elements, J. Mater. Process. Technol., Volume 153 (2004), pp. 314-318 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Transient rolling friction model for discrete element simulations of sphere assemblies

Matthew R. Kuhn

C. R. Méca (2014)


Multiscale modelling of asymmetric rolling with an anisotropic constitutive law

Diarmuid Shore; Paul Van Houtte; Dirk Roose; ...

C. R. Méca (2018)


Effect of the defect initial shape on the fatigue lifetime of a continuous casting machine roll

Oleh P. Yasniy; Yuri Lapusta

C. R. Méca (2016)