Comptes Rendus
Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra
[Les guides d'ondes élastiques et piézoélectriques peuvent avoir un nombre infini de lacunes dans leur spectre]
Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 190-194.

Nous considérons des guides d'ondes élastiques et piézoélectriques réalisés à partir de perles identiques agencées de façon périodique le long d'un rayon convergeant à l'infini. Nous montrons que le spectre essentiel est une suite croissante positive non bornée. Cela prouve l'existence d'un nombre infini de trous spectraux.

We consider elastic and piezoelectric waveguides composed from identical beads threaded periodically along a spoke converging at infinity. We show that the essential spectrum constitutes a non-negative monotone unbounded sequence and thus has infinitely many spectral gaps.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2015.12.004
Keywords: Waveguide, Elasticity, Piezoelectricity, Essential spectrum, Spectral gap, Singular Weyl sequence, Parametrix
Mot clés : Guide d'ondes, Élasticité, Piézoélectricité, Spectre essentiel, Troux spectraux, Suite de Weyl, Paramétrix
Sergei A. Nazarov 1, 2, 3 ; Jari Taskinen 4

1 Saint-Petersburg State University, Universitetskaya nab., 7–9, St. Petersburg, 199034, Russia
2 Peter the Great Saint-Petersburg State Polytechnical University, Polytechnicheskaya ul., 29, St. Petersburg, 195251, Russia
3 Institute of Problems of Mechanical Engineering RAS, V.O., Bolshoj pr., 61, St. Petersburg, 199178, Russia
4 University of Helsinki, Department of Mathematics and Statistics, P.O. Box 68, 00014 Helsinki, Finland
@article{CRMECA_2016__344_3_190_0,
     author = {Sergei A. Nazarov and Jari Taskinen},
     title = {Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {190--194},
     publisher = {Elsevier},
     volume = {344},
     number = {3},
     year = {2016},
     doi = {10.1016/j.crme.2015.12.004},
     language = {en},
}
TY  - JOUR
AU  - Sergei A. Nazarov
AU  - Jari Taskinen
TI  - Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 190
EP  - 194
VL  - 344
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2015.12.004
LA  - en
ID  - CRMECA_2016__344_3_190_0
ER  - 
%0 Journal Article
%A Sergei A. Nazarov
%A Jari Taskinen
%T Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra
%J Comptes Rendus. Mécanique
%D 2016
%P 190-194
%V 344
%N 3
%I Elsevier
%R 10.1016/j.crme.2015.12.004
%G en
%F CRMECA_2016__344_3_190_0
Sergei A. Nazarov; Jari Taskinen. Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra. Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 190-194. doi : 10.1016/j.crme.2015.12.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.12.004/

[1] S. Fliss; P. Joly Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition, Arch. Ration. Mech. Anal. (2016) (in press) | DOI

[2] S.A. Nazarov Umov–Mandel'stam radiation conditions in elastic periodic waveguide, Mat. Sb., Volume 205 (2014) no. 7, pp. 43-72 (English transl.: Sb. Math. 205 (7) (2014) 953–982)

[3] S.A. Nazarov A gap in the essential spectrum of the Neumann problem for an elliptic system in a periodic domain, Funkc. Anal. Prilozh., Volume 43 (2009) no. 3, pp. 92-95 (English transl.: Funct. Anal. Appl. 43 (3) (2009) 239–241)

[4] S.A. Nazarov; K. Ruotsalainen; J. Taskinen Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps, Appl. Anal., Volume 89 (2010) no. 1, pp. 109-124

[5] S.A. Nazarov On the plurality of gaps in the spectrum of a periodic waveguide, Mat. Sb., Volume 201 (2010) no. 4, pp. 99-124 (English transl.: Sb. Math. 201 (4) (2010) 569–594)

[6] S.A. Nazarov; J. Taskinen Spectral gaps for periodic piezoelectric waveguides, Z. Angew. Math. Phys., Volume 66 (2015), pp. 3017-3047

[7] V.N. Popov; M. Skriganov A remark on the spectral structure of the two dimensional Schrödinger operator with a periodic potential, Zap. Nauč. Semin. LOMI AN SSSR, Volume 109 (1981), pp. 131-133 (in Russian)

[8] M. Skriganov Geometrical and arithmetical methods in the spectral theory of the multi-dimensional periodic operators, Proc. Steklov Inst. Math., Volume 171 (1984)

[9] M. Skriganov The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math., Volume 80 (1985), pp. 107-121

[10] B. Helffer; A. Mohamed Asymptotics of the density of states for the Schrödinger operator with periodic electric potential, Duke Math. J., Volume 92 (1998), pp. 1-60

[11] L. Parnovski Bethe–Sommerfeld conjecture, Ann. Henri Poincaré, Volume 9 (2008) no. 3, pp. 457-508

[12] V.A. Kondratiev; O.A. Oleinik Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Usp. Mat. Nauk, Volume 43 (1988) no. 5, pp. 55-98 (English transl. in Russ. Math. Surv. 43 (5) (1988) 65–119)

[13] M.Sh. Birman; M.Z. Solomyak Spectral Theory of Selfadjoint Operators in Hilbert Space, Leningrad Univ., Leningrad, 1980 (English transl.: Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, The Netherlands, 1987)

[14] V.G. Maz'ya; S.A. Nazarov; B.A. Plamenevsky Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vols. 1, 2, Birkhäuser, Basel, Switzerland, 2000

[15] S.A. Nazarov; B.A. Plamenevsky Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, New York, 1994

[16] F.L. Bakharev, J. Taskinen, Bands in the spectrum of a periodic elastic waveguide, submitted.

[17] V.Z. Parton; B.A. Kudryavtsev Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, Gordon and Breach Science Publishers, New York, 1988

[18] S.A. Nazarov Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigen-oscillations of a piezoelectric plate, Probl. Mat. Anal., Volume 25 (2003), pp. 99-188 (English transl.: J. Math. Sci. 114 (5) (2003) 1657–1725)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Bifurcation analysis of a flexible balanced cracked rotor–bearing system

Nizar Ferjaoui; Sami Naimi; Mnaour Chouchane

C. R. Méca (2016)


Evolution of universes in causal set cosmology

Fay Dowker; Stav Zalel

C. R. Phys (2017)


The Weyl calculus and the zeta function

André Unterberger

C. R. Math (2008)