We consider elastic and piezoelectric waveguides composed from identical beads threaded periodically along a spoke converging at infinity. We show that the essential spectrum constitutes a non-negative monotone unbounded sequence and thus has infinitely many spectral gaps.
Nous considérons des guides d'ondes élastiques et piézoélectriques réalisés à partir de perles identiques agencées de façon périodique le long d'un rayon convergeant à l'infini. Nous montrons que le spectre essentiel est une suite croissante positive non bornée. Cela prouve l'existence d'un nombre infini de trous spectraux.
Accepted:
Published online:
Mots-clés : Guide d'ondes, Élasticité, Piézoélectricité, Spectre essentiel, Troux spectraux, Suite de Weyl, Paramétrix
Sergei A. Nazarov 1, 2, 3; Jari Taskinen 4
@article{CRMECA_2016__344_3_190_0, author = {Sergei A. Nazarov and Jari Taskinen}, title = {Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra}, journal = {Comptes Rendus. M\'ecanique}, pages = {190--194}, publisher = {Elsevier}, volume = {344}, number = {3}, year = {2016}, doi = {10.1016/j.crme.2015.12.004}, language = {en}, }
TY - JOUR AU - Sergei A. Nazarov AU - Jari Taskinen TI - Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra JO - Comptes Rendus. Mécanique PY - 2016 SP - 190 EP - 194 VL - 344 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2015.12.004 LA - en ID - CRMECA_2016__344_3_190_0 ER -
Sergei A. Nazarov; Jari Taskinen. Elastic and piezoelectric waveguides may have infinite number of gaps in their spectra. Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 190-194. doi : 10.1016/j.crme.2015.12.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.12.004/
[1] Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition, Arch. Ration. Mech. Anal. (2016) (in press) | DOI
[2] Umov–Mandel'stam radiation conditions in elastic periodic waveguide, Mat. Sb., Volume 205 (2014) no. 7, pp. 43-72 (English transl.: Sb. Math. 205 (7) (2014) 953–982)
[3] A gap in the essential spectrum of the Neumann problem for an elliptic system in a periodic domain, Funkc. Anal. Prilozh., Volume 43 (2009) no. 3, pp. 92-95 (English transl.: Funct. Anal. Appl. 43 (3) (2009) 239–241)
[4] Essential spectrum of a periodic elastic waveguide may contain arbitrarily many gaps, Appl. Anal., Volume 89 (2010) no. 1, pp. 109-124
[5] On the plurality of gaps in the spectrum of a periodic waveguide, Mat. Sb., Volume 201 (2010) no. 4, pp. 99-124 (English transl.: Sb. Math. 201 (4) (2010) 569–594)
[6] Spectral gaps for periodic piezoelectric waveguides, Z. Angew. Math. Phys., Volume 66 (2015), pp. 3017-3047
[7] A remark on the spectral structure of the two dimensional Schrödinger operator with a periodic potential, Zap. Nauč. Semin. LOMI AN SSSR, Volume 109 (1981), pp. 131-133 (in Russian)
[8] Geometrical and arithmetical methods in the spectral theory of the multi-dimensional periodic operators, Proc. Steklov Inst. Math., Volume 171 (1984)
[9] The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math., Volume 80 (1985), pp. 107-121
[10] Asymptotics of the density of states for the Schrödinger operator with periodic electric potential, Duke Math. J., Volume 92 (1998), pp. 1-60
[11] Bethe–Sommerfeld conjecture, Ann. Henri Poincaré, Volume 9 (2008) no. 3, pp. 457-508
[12] Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Usp. Mat. Nauk, Volume 43 (1988) no. 5, pp. 55-98 (English transl. in Russ. Math. Surv. 43 (5) (1988) 65–119)
[13] Spectral Theory of Selfadjoint Operators in Hilbert Space, Leningrad Univ., Leningrad, 1980 (English transl.: Math. Appl. (Soviet Ser.), D. Reidel Publishing Co., Dordrecht, The Netherlands, 1987)
[14] Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vols. 1, 2, Birkhäuser, Basel, Switzerland, 2000
[15] Elliptic Problems in Domains with Piecewise Smooth Boundaries, Walter de Gruyter, Berlin, New York, 1994
[16] F.L. Bakharev, J. Taskinen, Bands in the spectrum of a periodic elastic waveguide, submitted.
[17] Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, Gordon and Breach Science Publishers, New York, 1988
[18] Uniform estimates of remainders in asymptotic expansions of solutions to the problem on eigen-oscillations of a piezoelectric plate, Probl. Mat. Anal., Volume 25 (2003), pp. 99-188 (English transl.: J. Math. Sci. 114 (5) (2003) 1657–1725)
Cited by Sources:
Comments - Policy