We consider a two-dimensional boundary value problems for the Helmholtz equation with Dirichlet and Neumann boundary conditions on a set of arcs. This set is obtained from a closed curve by cutting out small holes situated close to each other and having a locally periodic structure. We construct the asymptotics of the scattering frequencies (poles of the analytic continuation of solutions) with small imaginary parts, which converge to the square roots of multiple eigenvalues of limit problems.
On considère des problèmes aux limites bidimensionnels pour l'équation de Helmholtz avec conditions aux limites de Dirichlet ou de Neumann sur un ensemble d'arcs. Cet ensemble est obtenu à partir d'une courbe fermée en découpant des petits trous situés près les uns des autres, avec une structure localement périodique. Nous construisons le développement asymptotique des fréquences de diffusion (pôles du prolongement analytique des solutions) avec des parties imaginaires petites, qui convergent vers les racines carrées des valeurs propres multiples du problème limite.
Accepted:
Published online:
Mots-clés : Asymptotique, Petit paramètre, Homogénéisation
Rustem R. Gadyl'shin 1, 2
@article{CRMECA_2016__344_3_181_0, author = {Rustem R. Gadyl'shin}, title = {On scattering frequencies in homogenization problems. {Critical} cases}, journal = {Comptes Rendus. M\'ecanique}, pages = {181--189}, publisher = {Elsevier}, volume = {344}, number = {3}, year = {2016}, doi = {10.1016/j.crme.2015.10.002}, language = {en}, }
Rustem R. Gadyl'shin. On scattering frequencies in homogenization problems. Critical cases. Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 181-189. doi : 10.1016/j.crme.2015.10.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.10.002/
[1] Boundary Value Problems in Domains with Fine–Grained Boundaries, Naukova Dumka, Kyiv, 1974 (in Russian)
[2] Boundary value problems in domains containing perforated walls (H. Brézis; J.-L. Lions, eds.), Nonlinear Partial Differential Equation and Their Applications, College de France Seminar III, Editors, Res. Notes Math., vol. 70, 1982, pp. 309-325
[3] On analogs of Helmholtz resonator in averaging theory, Mat. Sb., Volume 193 (2002) no. 11, pp. 43-70 (English translation: Sb. Math., 193, 11, 2002, pp. 1611-1638)
[4] On resonance in a homogenization problem, C. R. Mecanique, Volume 331 (2003) no. 9, pp. 595-600
[5] On resonance scattering in the two-dimensional averaging problem, Dokl. Akad. Nauk, Volume 397 (2004) no. 2, pp. 74-77 (English translation: Dokl. Math., 70, 1, 2004, pp. 639-643)
[6] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, American Mathematical Society, Providence, RI, 1992
[7] Splitting of the poles of a Helmholtz resonator, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 57 (1993) no. 5, pp. 44-74 (English translation: Russ. Acad. Sci., Izv. Math., 43, 2, 1994, pp. 233-260)
[8] The theory of Helmholtz resonator, Proc. R. Soc. Lond. A, Volume 92 (1916), pp. 265-275
Cited by Sources:
Comments - Policy