Comptes Rendus
Nonlinear vibrations of buckled plates by an asymptotic numerical method
Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 151-166.

This work deals with nonlinear vibrations of a buckled von Karman plate by an asymptotic numerical method and harmonic balance approach. The coupled nonlinear static and dynamic problems are transformed into a sequence of linear ones solved by a finite-element method. The static behavior of the plate is first computed. The fundamental frequency of nonlinear vibrations of the plate, about any equilibrium state, is obtained. To improve the validity range of the power series, Padé approximants are incorporated. A continuation technique is used to get the whole solution. To show the effectiveness of the proposed methodology, numerical tests are presented.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2016.01.002
Keywords: Nonlinear vibrations, Buckling, Von Karman plate, Asymptotic numerical method, Harmonic balance method, Finite-element method

Lahcen Benchouaf 1; El Hassan Boutyour 1

1 Department of Applied Physics, Faculty of Sciences and Technology, Hassan 1st University, PO Box 577, Settat, Morocco
@article{CRMECA_2016__344_3_151_0,
     author = {Lahcen Benchouaf and El Hassan Boutyour},
     title = {Nonlinear vibrations of buckled plates by an asymptotic numerical method},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {151--166},
     publisher = {Elsevier},
     volume = {344},
     number = {3},
     year = {2016},
     doi = {10.1016/j.crme.2016.01.002},
     language = {en},
}
TY  - JOUR
AU  - Lahcen Benchouaf
AU  - El Hassan Boutyour
TI  - Nonlinear vibrations of buckled plates by an asymptotic numerical method
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 151
EP  - 166
VL  - 344
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2016.01.002
LA  - en
ID  - CRMECA_2016__344_3_151_0
ER  - 
%0 Journal Article
%A Lahcen Benchouaf
%A El Hassan Boutyour
%T Nonlinear vibrations of buckled plates by an asymptotic numerical method
%J Comptes Rendus. Mécanique
%D 2016
%P 151-166
%V 344
%N 3
%I Elsevier
%R 10.1016/j.crme.2016.01.002
%G en
%F CRMECA_2016__344_3_151_0
Lahcen Benchouaf; El Hassan Boutyour. Nonlinear vibrations of buckled plates by an asymptotic numerical method. Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 151-166. doi : 10.1016/j.crme.2016.01.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.01.002/

[1] R.G. White Effects of non-linearity due to large deflections in the resonance testing of structures, J. Sound Vib., Volume 16 (1971), pp. 255-267

[2] J.B. Min; J.G. Eisley Nonlinear vibration of buckled beams, J. Eng. Ind. (1972), pp. 637-645

[3] W.Y. Tseng; J. Dugundji Nonlinear vibrations of a buckled beam under harmonic excitation, J. Appl. Mech. (1971), pp. 467-476

[4] W. Lestari; S. Hanagud Nonlinear vibration of buckled beams: some exact solutions, Int. J. Solids Struct., Volume 38 (2001), pp. 4741-4757

[5] M.H. Mahdavi; L.Y. Jiang; X. Sun Nonlinear vibration and postbuckling analysis of a single layer graphene sheet embedded in a polymer matrix, Physica E, Volume 44 (2012), pp. 1708-1715

[6] M. Faghih Shojaei; R. Ansari; V. Mohammadi; H. Rouhi Nonlinear forced vibration analysis of postbuckled beams, Arch. Appl. Mech., Volume 84 (2014), pp. 421-440

[7] R. Ansari; M.A. Ashrafi; A. Arjangpay An exact solution for vibrations of post-buckled microscale beams based on the modified couple stress theory, Appl. Math. Model., Volume 39 (2015), pp. 3050-3062

[8] S. Sahmani; M. Bahrami; R. Ansari Surface effects on the free vibration behavior of postbuckled circular higher-order shear deformable nanoplates including geometrical nonlinearity, Acta Astronaut., Volume 105 (2014), pp. 417-427

[9] J. Girish; L.S. Ramachandra Thermal postbuckled vibrations of symmetrically laminated composite plates withe initial geometric imperfections, J. Sound Vib., Volume 282 (2005), pp. 1137-1153

[10] S.R. Li; Y.H. Zhou; X. Song Non-linear vibration and thermal buckling of an orthotropic annular plate with a centric rigid mass, J. Sound Vib., Volume 251 (2002), pp. 141-152

[11] X.K. Xia; H.S. Shen Vibration of postbuckled FGM hybrid laminated plates in thermal environment, Eng. Struct., Volume 30 (2008), pp. 2420-2435

[12] X.K. Xia; H.S. Shen Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment, J. Sound Vib., Volume 314 (2008), pp. 254-274

[13] E.H. Boutyour; L. Azrar; M. Potier-Ferry Vibration of buckled elastic structures with large rotations by an asymptotic numerical method, Comput. Struct., Volume 84 (2006), pp. 93-101

[14] B. Cochelin A path following technique via an asymptotic numerical method, Comput. Struct., Volume 53 (1994), pp. 1181-1192

[15] A.H. Nayfeh; D.T. Mook Non-Linear Oscillations, Wiley, New York, USA, 1979

[16] L. Azrar; R. Benamar; M. Potier-Ferry An asymptotic–numerical method for large-amplitude free vibrations of thin elastic plates, J. Sound Vib., Volume 220 (1999), pp. 695-727

[17] L. Azrar; E.H. Boutyour; M. Potier-Ferry Non-linear forced vibrations of plates by an asymptotic–numerical method, J. Sound Vib., Volume 252 (2002), pp. 657-674

[18] A. Elhage-Hussein; M. Potier-Ferry; N. Damil A numerical continuation method based on Padé approximants, Int. J. Solids Struct., Volume 37 (2000), pp. 6981-7001

[19] A. Najah; B. Cochelin; N. Damil; M. Potier Ferry A critical review of asymptotic numerical methods, Arch. Comput. Methods Eng., Volume 5 (1998), pp. 3-22

[20] H. Mottaqui; B. Braikat; N. Damil Discussion about parameterization in the asymptotic numerical method: application to nonlinear elastic shells, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 1701-1709

[21] E.H. Boutyour Méthode asymptotique–numérique pour le calcul des bifurcations : application aux structures élastiques, Université de Metz, France, 1994 (Thesis)

[22] B. Cochelin; M. Medale Power series analysis as a major breakthrough to improve the efficiency of asymptotic numerical method in the vicinity of bifurcations, J. Comput. Phys., Volume 236 (2013), pp. 594-607

[23] O.C. Zienkiewicz The Finite Element Method, McGraw-Hill, London, UK, 1977

[24] J.L. Batoz; G. Dhatt Modélisation des structures par éléments finis, Hermès, Paris, France, 1990

[25] E.H. Boutyour; H. Zahrouni; M. Potier-Ferry; M. Boudi Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants, Int. J. Numer. Methods Eng., Volume 60 (2004), pp. 1987-2012

[26] S.L. Lau; Y.K. Cheung; S.Y. Wu Nonlinear vibration of thin elastic plates. Part I: Generalised incremental Hamilton's principle and finite element formulation, J. Appl. Mech., Volume 51 (1984), pp. 837-844

Cited by Sources:

Comments - Policy