Comptes Rendus
Aspect ratio of undulation in a vertically vibrated granular layer
Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 167-180.

The aspect ratio of the height δ to the wavelength λ of the undulation generated by a vertical vibration of the granular layer was investigated experimentally, and its dependence on the frequency f and amplitude a is disclosed. We found that δ/λ is well described by an almost linear function of fa rather than by that of Γ(2πf)2a/g, irrespective of the horizontal size of the container, where g is the acceleration of gravity. Appearance of sub-arches to maintain the main eigenmode and the transitions between eigenmodes of undulation are also elucidated.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.11.005
Keywords: Granular material, Vertical vibration, Undulation, Aspect ratio, Eigenmode, Buckling

Yoshihito Dose 1; Osamu Sano 2

1 Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
2 Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
@article{CRMECA_2016__344_3_167_0,
     author = {Yoshihito Dose and Osamu Sano},
     title = {Aspect ratio of undulation in a vertically vibrated granular layer},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {167--180},
     publisher = {Elsevier},
     volume = {344},
     number = {3},
     year = {2016},
     doi = {10.1016/j.crme.2015.11.005},
     language = {en},
}
TY  - JOUR
AU  - Yoshihito Dose
AU  - Osamu Sano
TI  - Aspect ratio of undulation in a vertically vibrated granular layer
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 167
EP  - 180
VL  - 344
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2015.11.005
LA  - en
ID  - CRMECA_2016__344_3_167_0
ER  - 
%0 Journal Article
%A Yoshihito Dose
%A Osamu Sano
%T Aspect ratio of undulation in a vertically vibrated granular layer
%J Comptes Rendus. Mécanique
%D 2016
%P 167-180
%V 344
%N 3
%I Elsevier
%R 10.1016/j.crme.2015.11.005
%G en
%F CRMECA_2016__344_3_167_0
Yoshihito Dose; Osamu Sano. Aspect ratio of undulation in a vertically vibrated granular layer. Comptes Rendus. Mécanique, Volume 344 (2016) no. 3, pp. 167-180. doi : 10.1016/j.crme.2015.11.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.11.005/

[1] M. Faraday On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Philos. Trans. R. Soc. Lond., Volume 121 (1831), p. 299

[2] H.M. Jaeger; S.R. Nagel Physics of the granular state, Science, Volume 255 (1992), p. 1523

[3] H.M. Jaeger; S.R. Nagel; R.P. Behringer Granular solids, liquids, and gases, Rev. Mod. Phys., Volume 68 (1996), p. 1259

[4] M.C. Cross; P.C. Hohenberg Pattern formation outside of equilibrium, Rev. Mod. Phys., Volume 65 (1993), p. 851

[5] I.S. Aranson; L.S. Tsimring Patterns and collective behavior in granular media: theoretical concept, Rev. Mod. Phys., Volume 78 (2006), p. 641

[6] F. Melo; P. Umbanhowar; H.L. Swinney Transition to parametric wave patterns in a vertically oscillated granular layer, Phys. Rev. Lett., Volume 72 (1994), pp. 172-175

[7] F. Melo; P.B. Umbanhowar; H.L. Swinney Hexagons, kinks, and disorder in oscillated granular layers, Phys. Rev. Lett., Volume 75 (1995), pp. 3838-3841

[8] P.B. Umbanhowar; F. Melo; H.L. Swinney Localized excitations in a vertically vibrated granular layer, Nature, Volume 382 (1996), pp. 793-796

[9] T.H. Metcalf; J.B. Knight; H. Jaeger Standing wave patterns in shallow beds of vibrated granular material, Physica A, Volume 236 (1997), pp. 202-210

[10] C. Bizon; M.D. Shattuck; J.B. Swift; W.D. McCormick; H.L. Swinney Patterns in 3D vertically oscillated granular layers: simulation and experiment, Phys. Rev. Lett., Volume 80 (1998), pp. 57-60

[11] O. Sano; A. Ugawa; K. Suzuki Pattern formation on the vertically vibrated granular layer, Forma, Volume 14 (1999), pp. 321-329

[12] P.B. Umbanhowar; H.L. Swinney Wavelength scaling and square/stripe and grain mobility transitions in vertically oscillated granular layers, Physica A, Volume 288 (2000), pp. 344-362

[13] E. Clément; L. Vanel; J. Rajchenbach; J. Duran Pattern formation in a vibrated granular layer, Phys. Rev. E, Volume 53 (1996), pp. 2972-2975

[14] K.M. Aoki; T. Akiyama Spontaneous wave pattern formation in vibrated granular materials, Phys. Rev. Lett., Volume 77 (1996), pp. 4166-4169

[15] A. Ugawa; O. Sano Dispersion relation of standing waves on a vertically oscillated thin granular layer, J. Phys. Soc. Jpn., Volume 71 (2002), pp. 2815-2819

[16] O. Sano Solid–fluid transition and the formation of ripples in vertically oscillated granular layers, AIP Conf. Proc., Volume 1227 (2010), pp. 100-114

[17] O. Sano Density wave as a mechanism of the formation of ripples in vertically oscillated granular layer, J. Phys. Soc. Jpn., Volume 80 (2011)

[18] O. Sano Wavelength selection mechanism of ripples in vertically vibrated thicker granular layer, J. Phys. Soc. Jpn., Volume 81 (2012)

[19] O. Sano Wavelength selection of ripples in vertically vibrating dynamically thick granular layer due to density wave refraction, C. R. Mecanique, Volume 342 (2014), pp. 52-62

[20] S. Douady; S. Fauve; C. Laroche Subharmonic instabilities and defects in a granular layer under vertical vibrations, Europhys. Lett., Volume 8 (1989), pp. 621-627

[21] A. Goldshtein; M. Shapiro; L. Moldavsky; M. Fichman Mechanics of collisional motion of granular materials. Part 2. Wave propagation through vibrofluidized granular layers, J. Fluid Mech., Volume 287 (1995), pp. 349-382

[22] Y. Lan; A.D. Rosato Convection related phenomena in granular dynamics simulations of vibrated beds, Phys. Fluids, Volume 9 (1997), pp. 3615-3624

[23] S.-J. Moon; M.D. Shattuck; C. Bizon; D.I. Goldman; J.B. Swift; H.L. Swinney Phase bubbles and spatiotemporal chaos in granular patterns, Phys. Rev. E, Volume 65 (2002)

[24] A. Ugawa; O. Sano Undulation of a thin granular layer induced by vertical vibration, J. Phys. Soc. Jpn., Volume 72 (2003), pp. 1390-1395

[25] K. Kanai; A. Ugawa; O. Sano Experiment on vibration-induced pattern formation of a vertically thin granular layer, J. Phys. Soc. Jpn., Volume 74 (2005), pp. 1457-1463

[26] O. Sano Dilatancy, buckling, and undulations on a vertically vibrating granular layer, Phys. Rev. E, Volume 72 (2005)

[27] A. Götzendorfer; C.-H. Tai; C.A. Kruelle; I. Rehberg; S.-S. Hsiau Fluidization of a vertically vibrated two-dimensional hard sphere packing: a granular meltdown, Phys. Rev. E, Volume 74 (2006)

[28] L.D. Landau; E.M. Lifshitz Theory of Elasticity, Pergamon, Oxford, 1986

Cited by Sources:

Comments - Policy