Comptes Rendus
Towards void formation and permeability predictions in LCM processes: A computational bifluid–solid mechanics framework dealing with capillarity and wetting issues
[Vers des prédictions de perméabilité et de formation de vides dans les procédés d'élaboration des matériaux composites par infusion : un modèle de contact bifluide–solide impliquant les effets de tension de surface et de mouillage]
Comptes Rendus. Mécanique, Volume 344 (2016) no. 4-5, pp. 236-250.

Un modèle de contact bifluide–solide, impliquant les effets de tension de surface et de mouillage, a été développé dans un code éléments finis, afin de fournir une caractérisation précise des fluides (résine/air) et des fibres imperméables à l'échelle microscopique au cours des procédés d'élaboration des matériaux composites par infusion de résine. Ce modèle est basé sur une description eulérienne des deux fluides non miscibles et sur des conditions aux limites qui décrivent les phénomènes de mouillage aux interfaces fluides/fibres. Le front fluide est décrit par une méthode Level set, sur laquelle les forces capillaires sont considérées. Les évolutions des gouttes sous l'effet du mouillage ont été simulées pour illustrer ce problème complexe.

A bifluid–solid contact model involving surface tension and wetting effects is developed within a finite element framework, in order to provide an accurate characterization of the fluids and fibrous behaviours during Liquid Composite Molding processes. This model is based on a Eulerian approach of two immiscible fluid (resin/air) domains with boundary conditions which prescribe wetting phenomena at fluid/fiber interfaces. The fluid interface is described by the Level Set method, on which capillary force is considered. Numerical simulations of a drop evolution with wetting effects are used to illustrate this challenging physical problem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.02.004
Keywords: Composite material, Porosities, Capillarity, Wetting, Bifluid model, Level Set, Stokes, Finite element
Mot clés : Matériaux composites, Porosités, Capillarité, Mouillage, Modèle bifluide, Level Set, Stokes, Éléments finis
Yujie Liu 1 ; Nicolas Moulin 1 ; Julien Bruchon 1 ; Pierre-Jacques Liotier 1 ; Sylvain Drapier 1

1 LGF UMR CNRS 5307, École des mines de Saint-Étienne, 158, cours Fauriel, CS 62362, 42023 Saint-Étienne cedex 2, France
@article{CRMECA_2016__344_4-5_236_0,
     author = {Yujie Liu and Nicolas Moulin and Julien Bruchon and Pierre-Jacques Liotier and Sylvain Drapier},
     title = {Towards void formation and permeability predictions in {LCM} processes: {A} computational bifluid{\textendash}solid mechanics framework dealing with capillarity and wetting issues},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {236--250},
     publisher = {Elsevier},
     volume = {344},
     number = {4-5},
     year = {2016},
     doi = {10.1016/j.crme.2016.02.004},
     language = {en},
}
TY  - JOUR
AU  - Yujie Liu
AU  - Nicolas Moulin
AU  - Julien Bruchon
AU  - Pierre-Jacques Liotier
AU  - Sylvain Drapier
TI  - Towards void formation and permeability predictions in LCM processes: A computational bifluid–solid mechanics framework dealing with capillarity and wetting issues
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 236
EP  - 250
VL  - 344
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2016.02.004
LA  - en
ID  - CRMECA_2016__344_4-5_236_0
ER  - 
%0 Journal Article
%A Yujie Liu
%A Nicolas Moulin
%A Julien Bruchon
%A Pierre-Jacques Liotier
%A Sylvain Drapier
%T Towards void formation and permeability predictions in LCM processes: A computational bifluid–solid mechanics framework dealing with capillarity and wetting issues
%J Comptes Rendus. Mécanique
%D 2016
%P 236-250
%V 344
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2016.02.004
%G en
%F CRMECA_2016__344_4-5_236_0
Yujie Liu; Nicolas Moulin; Julien Bruchon; Pierre-Jacques Liotier; Sylvain Drapier. Towards void formation and permeability predictions in LCM processes: A computational bifluid–solid mechanics framework dealing with capillarity and wetting issues. Comptes Rendus. Mécanique, Volume 344 (2016) no. 4-5, pp. 236-250. doi : 10.1016/j.crme.2016.02.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.02.004/

[1] P. Celle; S. Drapier; J.-M. Bergheau Numerical modelling of liquid infusion into fibrous media undergoing compaction, Eur. J. Mech. A-Solids, Volume 27 (2008) no. 4, pp. 647-661

[2] L. Abouorm; N. Moulin; J. Bruchon; S. Drapier Monolithic approach of Stokes–Darcy coupling for LCM process modelling, Key Eng. Mater., Volume 554 (2013), pp. 447-455

[3] L. Abouorm; M. Blais; N. Moulin; J. Bruchon; S. Drapier A robust monolithic approach for resin infusion based process modelling, Key Engineering Materials, vol. 611, 2014, pp. 306-315

[4] A. Dereims; S. Drapier; J.-M. Bergheau; P. de Luca 3D robust iterative coupling of Stokes, Darcy and solid mechanics for low permeability media undergoing finite strains, Finite Elem. Anal. Des., Volume 94 (2015), pp. 1-15

[5] F.H. Harlow; J.E. Welch et al. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, Volume 8 (1965) no. 12, p. 2182

[6] S. Osher; J.A. Sethian Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., Volume 79 (1988) no. 1, pp. 12-49

[7] J.A. Sethian Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry Fluid Mechanics, Computer Vision, and Materials Science, vol. 3, Cambridge University Press, 1999

[8] C.W. Hirt; B.D. Nichols Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., Volume 39 (1981) no. 1, pp. 201-225

[9] G. Tryggvason; B. Bunner; A. Esmaeeli; D. Juric; N. Al-Rawahi; W. Tauber; J. Han; S. Nas; Y.-J. Jan A front-tracking method for the computations of multiphase flow, J. Comput. Phys., Volume 169 (2001) no. 2, pp. 708-759

[10] E. Maitre Review of numerical methods for free interfaces, Les Houches (2006)

[11] A. Smolianski Numerical modeling of two-fluid interfacial flows, University of Jyväskylä, 2001 (PhD thesis)

[12] M. van Sint Annaland; N. Deen; J. Kuipers Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method, Chem. Eng. Sci., Volume 60 (2005) no. 11, pp. 2999-3011

[13] M. Sussman; M. Ohta High-order techniques for calculating surface tension forces, Free Boundary Problems, Springer, 2007, pp. 425-434

[14] S. Groß; A. Reusken An extended pressure finite element space for two-phase incompressible flows with surface tension, J. Comput. Phys., Volume 224 (2007) no. 1, pp. 40-58

[15] R.F. Ausas; F.S. Sousa; G.C. Buscaglia An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 17, pp. 1019-1031

[16] S. Ganesan; G. Matthies; L. Tobiska On spurious velocities in incompressible flow problems with interfaces, Comput. Methods Appl. Mech. Eng., Volume 196 (2007) no. 7, pp. 1193-1202

[17] D. Pino Muñoz; J. Bruchon; S. Drapier; F. Valdivieso A finite element-based level set method for fluid–elastic solid interaction with surface tension, Int. J. Numer. Methods Eng., Volume 93 (2013) no. 9, pp. 919-941

[18] J. Brackbill; D.B. Kothe; C. Zemach A continuum method for modeling surface tension, J. Comput. Phys., Volume 100 (1992) no. 2, pp. 335-354

[19] Y. Demay; A. Béliveau; A. Fortin A numerical method for the deformation of two-dimensional drops with surface tension, Int. J. Comput. Fluid Dyn., Volume 10 (1998), pp. 225-240

[20] P.-G. De Gennes Wetting: statics and dynamics, Rev. Mod. Phys., Volume 57 (1985) no. 3, p. 827

[21] D. Bonn; J. Eggers; J. Indekeu; J. Meunier; E. Rolley Wetting and spreading, Rev. Mod. Phys., Volume 81 (2009) no. 2, p. 739

[22] T. Qian; X.-P. Wang; P. Sheng Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, Volume 68 (2003) no. 1

[23] W. Ren; E. Weinan Boundary conditions for the moving contact line problem, Phys. Fluids, Volume 19 (2007) no. 2

[24] H. Kusumaatmaja; J.M. Yeomans Lattice Boltzmann simulations of wetting and drop dynamics, Simulating Complex Systems by Cellular Automata, Springer, 2010, pp. 241-274

[25] Y. Sui; H. Ding; P.D. Spelt Numerical simulations of flows with moving contact lines, Annu. Rev. Fluid Mech., Volume 46 (2014), pp. 97-119

[26] Y. Yamamoto; K. Tokieda; T. Wakimoto; T. Ito; K. Katoh Modeling of the dynamic wetting behavior in a capillary tube considering the macroscopic–microscopic contact angle relation and generalized Navier boundary condition, Int. J. Multiph. Flow, Volume 59 (2014), pp. 106-112

[27] G.C. Buscaglia; R.F. Ausas Variational formulations for surface tension, capillarity and wetting, Comput. Methods Appl. Mech. Eng., Volume 200 (2011) no. 45, pp. 3011-3025

[28] J. Sprittles; Y. Shikhmurzaev Finite element framework for describing dynamic wetting phenomena, Int. J. Numer. Methods Fluids, Volume 68 (2012) no. 10, pp. 1257-1298

[29] J.-F. Gerbeau; T. Lelievre Generalized Navier boundary condition and geometric conservation law for surface tension, Comput. Methods Appl. Mech. Eng., Volume 198 (2009) no. 5, pp. 644-656

[30] M. Pucci; P.-J. Liotier; S. Drapier Capillary effects on flax fibres-modification and characterisation of the wetting dynamics, Compos. Part A Appl. Sci. Manuf., Volume 77 (2015), pp. 257-265 | DOI

[31] M. Sussman; P. Smereka; S. Osher A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., Volume 114 (1994) no. 1, pp. 146-159

[32] A.N. Brooks; T.J. Hughes Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Eng., Volume 32 (1982) no. 1, pp. 199-259

[33] C. Navier Mémoire sur les lois du mouvement des fluides, Mém. Acad. Sci. Inst. Fr., Volume 6 (1823), pp. 389-440

[34] E. Dussan On the spreading of liquids on solid surfaces: static and dynamic contact lines, Annu. Rev. Fluid Mech., Volume 11 (1979) no. 1, pp. 371-400

[35] J.-B. Dupont; D. Legendre Numerical simulation of static and sliding drop with contact angle hysteresis, J. Comput. Phys., Volume 229 (2010) no. 7, pp. 2453-2478

[36] S. Badia; R. Codina Unified stabilized finite element formulations for the Stokes and the Darcy problems, SIAM J. Numer. Anal., Volume 47 (2009) no. 3, pp. 1971-2000

[37] L. Abouorm; R. Troian; S. Drapier; J. Bruchon; N. Moulin Stokes–Darcy coupling in severe regimes using multiscale stabilisation for mixed finite elements: monolithic approach versus decoupled approach, Eur. J. Comput. Mech., Volume 23 (2014) no. 3–4, pp. 113-137

[38] H. Coppola-Owen; R. Codina A free surface finite element model for low Froude number mould filling problems on fixed meshes, Int. J. Numer. Methods Fluids, Volume 66 (2011) no. 7, pp. 833-851

[39] E. Aulisa; S. Manservisi; R. Scardovelli; S. Zaleski Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, J. Comput. Phys., Volume 225 (2007) no. 2, pp. 2301-2319

[40] D. Pino-Muñoz; J. Bruchon; S. Drapier; F. Valdivieso Sintering at particle scale: an Eulerian computing framework to deal with strong topological and material discontinuities, Arch. Comput. Methods Eng., Volume 21 (2014) no. 2, pp. 141-187

[41] S. Zahedi; M. Kronbichler; G. Kreiss Spurious currents in finite element based level set methods for two-phase flow, Int. J. Numer. Methods Fluids, Volume 69 (2012) no. 9, pp. 1433-1456

[42] M. Bellet Implementation of surface tension with wall adhesion effects in a three-dimensional finite element model for fluid flow, Commun. Numer. Methods Eng., Volume 17 (2001) no. 8, pp. 563-579

[43] G. Puaux Simulation numérique des écoulements aux échelles microscopique et mésoscopique dans le procédé RTM, École nationale supérieure des mines de Paris, 2011 (PhD thesis)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Multiphase flows in microfluidics

Charles N. Baroud; Hervé Willaime

C. R. Phys (2004)


A direct relation between bending energy and contact angles for capillary bridges

Olivier Millet; Gérard Gagneux

C. R. Méca (2023)