Comptes Rendus
Effect of temperature on the time-dependent behavior of geomaterials
Comptes Rendus. Mécanique, Volume 344 (2016) no. 8, pp. 603-611.

In many geotechnical engineering applications, such as nuclear waste disposal and geothermal extraction and storage, it is necessary to consider the long-term mechanical properties. The effect of temperature could have a complicated influence on the creep damage behavior of soft rock. As a consequence, it is meaningful, both in theory and in practice, to establish a constitutive model that can describe the creep damage behavior. Within the framework of continuum mechanics, a thermo-visco-elastoplastic model is proposed on the basis of a sub-loading Cam-clay model and the concept of equivalent stress. Triaxial creep tests under different confining pressures for Tage stone were conducted to validate the proposed model. The experimental results show that an optimum temperature exists for a certain stress state, and this temperature significantly slows down the creep damage rate. In addition, both the retarding and accelerating effects on creep rupture due to limited warming are observed for the same material, and this phenomenon can be predicted well by the proposed model. Finally, a parametric analysis is performed, and the influence of the material parameter on creep regularity is discussed in detail.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.04.005
Mots clés : Equivalent stress, Creep constitutive model, Creep regularity, Optimum temperature
Sheng Zhang 1, 2 ; Shuo Xu 1 ; Jidong Teng 1, 2 ; Yonglin Xiong 3

1 School of Civil Engineering, Central South University, Changsha 410075, China
2 National Engineering Laboratory for High-Speed-Railway Construction, Central South University, China
3 Department of Civil Engineering, Tongji University, Shanghai 200092, China
@article{CRMECA_2016__344_8_603_0,
     author = {Sheng Zhang and Shuo Xu and Jidong Teng and Yonglin Xiong},
     title = {Effect of temperature on the time-dependent behavior of geomaterials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {603--611},
     publisher = {Elsevier},
     volume = {344},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crme.2016.04.005},
     language = {en},
}
TY  - JOUR
AU  - Sheng Zhang
AU  - Shuo Xu
AU  - Jidong Teng
AU  - Yonglin Xiong
TI  - Effect of temperature on the time-dependent behavior of geomaterials
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 603
EP  - 611
VL  - 344
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2016.04.005
LA  - en
ID  - CRMECA_2016__344_8_603_0
ER  - 
%0 Journal Article
%A Sheng Zhang
%A Shuo Xu
%A Jidong Teng
%A Yonglin Xiong
%T Effect of temperature on the time-dependent behavior of geomaterials
%J Comptes Rendus. Mécanique
%D 2016
%P 603-611
%V 344
%N 8
%I Elsevier
%R 10.1016/j.crme.2016.04.005
%G en
%F CRMECA_2016__344_8_603_0
Sheng Zhang; Shuo Xu; Jidong Teng; Yonglin Xiong. Effect of temperature on the time-dependent behavior of geomaterials. Comptes Rendus. Mécanique, Volume 344 (2016) no. 8, pp. 603-611. doi : 10.1016/j.crme.2016.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.04.005/

[1] R.G. Campanella; J.K. Mitchell Influence of temperature variations on soil behavior, J. Soil Mech. Found. Eng. Div., Volume 94 (1968) no. 3, pp. 709-734

[2] P. Delage; N. Sultan; Y.J. Cui On the thermal consolidation of Boom clay, Can. Geotech. J., Volume 37 (2000) no. 2, pp. 343-354

[3] X. Gao; C. Yang; W. Wu et al. Experimental studies on temperature dependent properties of creep of rock salt, Chin. J. Rock Mech. Eng., Volume 24 (2005) no. 12, pp. 2054-2059 (in Chinese)

[4] T. Hueckel; B. Francois; L. Laloui Explaining thermal failure in saturated clays, Geotechnique, Volume 59 (2009) no. 3, pp. 197-212

[5] L. Laloui; H. Modaressi Modelling of the thermo–hydro-plastic behaviour of clays (N. Hoteit, ed.), Hydromechanical and Thermohydromechanical Behaviour of Deep Argillaceous Rock, Balkema, Rotterdam, The Netherlands, 2002, pp. 161-170

[6] Y. Xiong; S. Zhang; G. Ye; F. Zhang Modification of thermo–elasto-viscoplastic model for soft rock and its application to THM analysis on heating tests, Soil Found., Volume 54 (2014) no. 2, pp. 176-196

[7] Y. Yao; W. Hou; A. Zhou UH model: three-dimensional unified hardening model for overconsolidated clays, Geotechnique, Volume 59 (2009) no. 5, pp. 451-469

[8] A. Yashima; S. Leroueil; F. Oka et al. Modelling temperature and strain rate dependent behavior of clays: one-dimensional consolidation, Soil Found., Volume 38 (1998) no. 2, pp. 63-73

[9] D. De Bruyn; J.F. Thimus The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme, Eng. Geol., Volume 41 (1996) no. 1, pp. 117-126

[10] K. Shibata; K. Tani; T. Okada Creep behavior of tuffaceous rock at high temperature observed in unconfined compression test, Soil Found., Volume 47 (2007) no. 1, pp. 1-10

[11] Y.J. Cui; T.T. Le; A.M. Tang et al. Investigating the time-dependent behaviour of Boom clay under thermomechanical loading, Geotechnique, Volume 59 (2009), pp. 319-329

[12] T. Okada Mechanical Properties of Sedimentary Soft Rock at High Temperature. Part 2. Evaluation of Temperature Dependency of Creep Behavior Based on Unconfined Compression Test, Central Research Institute of Electric Power Industry, Chiba, Japan, 2006 (in Japanese)

[13] Y.J. Cui; N. Sultan; P.A. Delage Thermomechanical model for saturated clays, Can. Geotech. J., Volume 37 (2000) no. 3, pp. 607-620

[14] J. Graham; N. Tanaka; T. Crilly et al. Modified Cam–Clay modelling of temperature effects in clays, Can. Geotech. J., Volume 38 (2001) no. 3, pp. 608-621

[15] S. Zhang; F. Zhang A thermo–elasto-viscoplastic model for soft sedimentary rock, Soil Found., Volume 49 (2009) no. 4, pp. 583-595

[16] S. Zhang; W.M. Leng; F. Zhang et al. A simple thermo-elastoplastic model for geomaterials, Int. J. Plast., Volume 34 (2012), pp. 93-113

[17] H. Modaressi; L. Laloui A thermo–viscoplastic constitutive model for clays, Int. J. Numer. Anal. Methods Geomech., Volume 21 (1997) no. 5, pp. 313-335

[18] Y. Xiong; G. Ye; H. Zhu; S. Zhang; F. Zhang Thermo-elastoplastic constitutive model for unsaturated soils, Acta Geotech. (2016) (accepted)

[19] K. Hashiguchi Elasto-plastic constitutive laws of granular materials, Tokyo, JSSMFE, Tokyo (S. Murayama; A.N. Schofield, eds.) (Proc. 9th Int. Conf. Soil Mech. Found. Eng., Spec. Session 9) (1977), pp. 73-82

[20] F. Zhang; A. Yashima; T. Nakai et al. An elasto-viscoplastic model for soft sedimentary rock based on tij concept and subloading yield surface, Soil Found., Volume 45 (2005) no. 1, pp. 65-73

[21] M. Shimizu Quantitative assessment of thermal acceleration of time effects in one-dimensional compression of clays, IS Lyon, Lyon, France, 22–24 September (Proceedings of the Third International Symposium on Deformation Characteristics of Geomaterials) (2003), pp. 479-487

[22] W. Ma; Z. Wu; Y. Sheng Creep and creep strength of frozen soil, J. Glaciol. Geocryol., Volume 16 (1994) no. 2, pp. 113-118 (in Chinese)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A thermo-elastoplastic model for soft rocks considering structure

Zuoyue He; Sheng Zhang; Jidong Teng; ...

C. R. Méca (2017)


A contribution to the modelling of creep behaviour of FCC metals

Ahmed Maati; El Hadj Ouakdi; Laurent Tabourot; ...

C. R. Méca (2021)


Shear relaxation characteristics of rock joints under stepwise loadings

Ang Liu; Guanghui Tian; Qingzhao Zhang; ...

C. R. Méca (2018)