Comptes Rendus
Evolutionary fracture analysis of masonry arches: Effects of shallowness ratio and size scale
Comptes Rendus. Mécanique, Volume 344 (2016) no. 9, pp. 623-630.

Masonry arch structures can be determined by means of a detailed analysis that takes into account the intermediate cracking stage, which takes place when the tensile strength of the material has been exceeded, even though the collapse mechanism has not formed yet. Such a hypothesis is based on a constitutive law that returns a closer approximation to the actual material's behaviour.

This paper presents the evolutionary analysis for the fracturing assessment of masonry arches. This method allows capturing the damaging process that occurs when the linear elastic behaviour's conditions in tension no longer apply, and before achieving the limit conditions. Furthermore, the way the thrust line is influenced by the formation of cracks and the consequent internal stresses redistribution, representing the “fracturing benefit”, can be assessed numerically. Size scale effects are also taken into account, as well as the influence of the arch's shallowness ratio.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2016.05.002
Keywords: Masonry structures, Masonry arches, Evolutionary analysis, Fracturing benefit, Scale effect, Brittleness number, Shallowness ratio

Federico Accornero 1; Giuseppe Lacidogna 1; Alberto Carpinteri 1

1 Politecnico di Torino, Department of Structural, Geotechnical and Building Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
@article{CRMECA_2016__344_9_623_0,
     author = {Federico Accornero and Giuseppe Lacidogna and Alberto Carpinteri},
     title = {Evolutionary fracture analysis of masonry arches: {Effects} of shallowness ratio and size scale},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {623--630},
     publisher = {Elsevier},
     volume = {344},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crme.2016.05.002},
     language = {en},
}
TY  - JOUR
AU  - Federico Accornero
AU  - Giuseppe Lacidogna
AU  - Alberto Carpinteri
TI  - Evolutionary fracture analysis of masonry arches: Effects of shallowness ratio and size scale
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 623
EP  - 630
VL  - 344
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2016.05.002
LA  - en
ID  - CRMECA_2016__344_9_623_0
ER  - 
%0 Journal Article
%A Federico Accornero
%A Giuseppe Lacidogna
%A Alberto Carpinteri
%T Evolutionary fracture analysis of masonry arches: Effects of shallowness ratio and size scale
%J Comptes Rendus. Mécanique
%D 2016
%P 623-630
%V 344
%N 9
%I Elsevier
%R 10.1016/j.crme.2016.05.002
%G en
%F CRMECA_2016__344_9_623_0
Federico Accornero; Giuseppe Lacidogna; Alberto Carpinteri. Evolutionary fracture analysis of masonry arches: Effects of shallowness ratio and size scale. Comptes Rendus. Mécanique, Volume 344 (2016) no. 9, pp. 623-630. doi : 10.1016/j.crme.2016.05.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.05.002/

[1] G. Milani; P. Lourenço; A. Tralli Homogenised limit analysis of masonry walls, Part I: failure surfaces, Comput. Struct., Volume 84 (2006), pp. 66-180

[2] L. Berto; A. Saetta; R. Scotta; R. Vitaliani An orthotropic damage model for masonry structures, Int. J. Numer. Methods Eng., Volume 55 (2002), pp. 127-157

[3] P. Lourenço Anisotropic softening model for masonry plates and shells, J. Struct. Eng., Volume 126 (2000), pp. 1008-1015

[4] A. Carpinteri; A. Carpinteri Softening and fracturing process in masonry arches, Rome, Italy (1982), pp. 502-510

[5] A. Carpinteri; G. Lacidogna; F. Accornero Evolution of fracturing process in masonry arches, J. Struct. Eng., Volume 141 (2015), pp. 1-10

[6] A. Carpinteri Application of fracture mechanics to concrete structures, J. Struct. Div., Volume 108 (1982), pp. 833-848

[7] H. Tada; P.C. Paris; G.R. Irwin The Stress Analysis of Crack Handbook, Paris Productions, St. Louis, MO, USA, 1985

[8] E. Mery Équilibre des voûtes en berceau, Ann. Ponts Chaussées, Volume 1 (1840), pp. 50-70

[9] V. Poncelet Examen critique et historique des principales théories ou solutions concernant l'équilibre des voûtes, C. R. Hebd. Séances Acad. Sci. Paris, Volume 35 (1852), pp. 494-587

[10] J. Heyman The Masonry Arch, Ellis Horwood, Chichester, UK, 1982

[11] I. Karnowsky Theory of Arched Structures, Springer, 2012

[12] T. Fett Mixed mode stress intensity factor for partially opened cracks, Int. J. Fract., Volume 111 (2001), pp. 67-72

[13] UIC Code 778-3, Recommendations for the assessment of the load carrying capacity of existing masonry and mass-concrete arch bridges, Paris, International Union of Railways (UIC), 1995.

[14] A. Carpinteri Size effect in fracture toughness testing: a dimensional analysis approach, Rome, Italy (1980), pp. 785-797

[15] A. Carpinteri Static and energetic fracture parameters for rocks and concretes, Mater. Struct., Volume 14 (1981), pp. 151-162

[16] A. Carpinteri Experimental determination of fracture toughness parameters KIC and JIC for aggregative materials, Cannes, France (1981), pp. 1491-1498

[17] A. Carpinteri Notch sensitivity in fracture testing of aggregative materials, Eng. Fract. Mech., Volume 16 (1982), pp. 467-481

[18] A. Carpinteri; P. Cornetti; S. Puzzi Scaling laws and multi-scale approach in the mechanics of heterogeneous and disordered materials, Appl. Mech. Rev., Volume 59 (2006), pp. 283-305

[19] L.C. Lancaster Concrete Vaulted Construction in Imperial Rome: Innovations in Context, Cambridge University Press, 2005

[20] M. Betti; G.A. Drosopoulos; G.E. Stavroulakis Two non-linear finite element models developed for the assessment of failure of masonry arches, C. R., Mecanique, Volume 336 (2008), pp. 42-53

Cited by Sources:

Comments - Policy