Comptes Rendus
The Proper Generalized Decomposition as a space–time integrator for elastoplastic problems
Comptes Rendus. Mécanique, Volume 344 (2016) no. 11-12, pp. 759-768.

This paper details the development of the Proper Generalized Decomposition as a space–time integrator of elastoplastic problems and shows its ability to determine the elastoplastic states resulting from cyclic loadings. The first part of this paper recalls the step-by-step resolution in time of an elastoplastic problem. The implementation of the Proper Generalized Decomposition is then developed in a second part. In the last third part, applications and numerical simulations are presented to show the relevance of the method.

Published online:
DOI: 10.1016/j.crme.2016.06.002
Keywords: Proper Generalized Decomposition, Space–time finite elements, Elastoplasticity

Jean-Michel Bergheau 1; Sylvain Zuchiatti 1; Jean-Christophe Roux 1; Éric Feulvarch 1; Samuel Tissot 2; Gilles Perrin 3

1 Université de Lyon, ENISE, LTDS, UMR 5513 CNRS, 58, rue Jean-Parot, 42023 Saint-Étienne cedex 2, France
2 AREVA NP, 10–12, rue Juliette-Récamier, 69456 Lyon cedex 06, France
3 AREVA NP, Tour Areva, 1, place Jean-Millier, 92084 Paris La Défense cedex, France
     author = {Jean-Michel Bergheau and Sylvain Zuchiatti and Jean-Christophe Roux and \'Eric Feulvarch and Samuel Tissot and Gilles Perrin},
     title = {The {Proper} {Generalized} {Decomposition} as a space{\textendash}time integrator for elastoplastic problems},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {759--768},
     publisher = {Elsevier},
     volume = {344},
     number = {11-12},
     year = {2016},
     doi = {10.1016/j.crme.2016.06.002},
     language = {en},
AU  - Jean-Michel Bergheau
AU  - Sylvain Zuchiatti
AU  - Jean-Christophe Roux
AU  - Éric Feulvarch
AU  - Samuel Tissot
AU  - Gilles Perrin
TI  - The Proper Generalized Decomposition as a space–time integrator for elastoplastic problems
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 759
EP  - 768
VL  - 344
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2016.06.002
LA  - en
ID  - CRMECA_2016__344_11-12_759_0
ER  - 
%0 Journal Article
%A Jean-Michel Bergheau
%A Sylvain Zuchiatti
%A Jean-Christophe Roux
%A Éric Feulvarch
%A Samuel Tissot
%A Gilles Perrin
%T The Proper Generalized Decomposition as a space–time integrator for elastoplastic problems
%J Comptes Rendus. Mécanique
%D 2016
%P 759-768
%V 344
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2016.06.002
%G en
%F CRMECA_2016__344_11-12_759_0
Jean-Michel Bergheau; Sylvain Zuchiatti; Jean-Christophe Roux; Éric Feulvarch; Samuel Tissot; Gilles Perrin. The Proper Generalized Decomposition as a space–time integrator for elastoplastic problems. Comptes Rendus. Mécanique, Volume 344 (2016) no. 11-12, pp. 759-768. doi : 10.1016/j.crme.2016.06.002.

[1] J. Zarka; J. Frelat; G. Inglebert; P. Kasmai-Navidi A New Approach in Inelastic Analysis of Structures, CADLM, Gif-sur-Yvette, France, 1990

[2] A. Benoit; M.-H. Maitournam; L. Rémy; F. Oger Cyclic behaviour of structures under thermomechanical loadings: application to exhaust manifolds, Int. J. Fatigue, Volume 38 (2012), pp. 65-74

[3] K.V. Spiliopoulos; K.D. Panagiotou A direct method to predict cyclic steady states of elastoplastic structures, Comput. Methods Appl. Mech. Eng., Volume 223 (2012) no. 224, pp. 186-198

[4] M. Peigney; C. Stolz An optimal control approach to the analysis of inelastic structures under cyclic loading, J. Mech. Phys. Solids, Volume 51 (2003) no. 4, pp. 575-605

[5] M.-H. Maitournam; B. Pommier; J.-J. Thomas Determination of the asymptotic response of a structure under cyclic thermomechanical loading, C. R. Mecanique, Volume 330 (2002) no. 10, pp. 703-708

[6] P.-M. Lesne; S. Savalle An efficient cycle jump technique for viscoplastic structure calculations involving large number of cycles, Barcelona, Spain (1989), pp. 591-602

[7] J.-L. Chaboche; G. Cailletaud Integration methods for complex plastic constitutive equations, Comput. Methods Appl. Mech. Eng., Volume 133 (1996), pp. 125-155

[8] P. Boisse; P. Bussy; P. Ladevèze A new approach in non-linear mechanics: the large time increment method, Int. J. Numer. Methods Eng., Volume 29 (1990), pp. 647-663

[9] J.-Y. Cognard; P. Ladevèze A large time increment approach for cyclic viscoplasticity, Int. J. Plast., Volume 9 (1993), pp. 141-157

[10] F. Comte; M.-H. Maitournam; P. Burry; T. Mac Lan Nguyen A direct method for the solution of evolution problems, C. R. Mecanique, Volume 334 (2006), pp. 317-322

[11] A. Ammar; M. Normandin; F. Chinesta Solving parametric complex fluids models in rheometric flows, J. Non-Newton. Fluid Mech., Volume 165 (2010), pp. 1588-1601

[12] E. Pruliere; F. Chinesta; A. Ammar On the deterministic solution of multidimensional parametric models by using the Proper Generalized Decomposition, Math. Comput. Simul., Volume 81 (2010), pp. 791-810

[13] F. Chinesta; R. Keunings; A. Leygue The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer, SpringerBriefs Appl. Sci. Technol., Springer, 2014

[14] J.L. Lumley The structure of inhomogeneous turbulent flows, Moscow (A.M. Yaglom; V.I. Tatarsky, eds.) (1967), pp. 166-178

[15] C. Germoso; J.V. Aguado; A. Fraile; E. Alarcon; F. Chinesta Efficient PGD-based dynamic calculation of non-linear soil behavior, C. R. Mecanique, Volume 344 (2016) no. 1, pp. 24-41

[16] M. Hammoud; M. Beringhier; J.-C. Grandidier A reduced simulation applied to the viscoelastic fatigue of polymers, C. R. Mecanique, Volume 342 (2014), pp. 671-691

[17] A. Ammar; A. Zghal; F. Morel; F. Chinesta On the space–time separated representation of integral linear viscoelastic models, C. R. Mecanique, Volume 343 (2015) no. 4, pp. 247-263

[18] R. De Borst; M.A. Crisfield; J.J. Remmers; C.V. Verhoosel Nonlinear Finite Element Analysis of Solids and Structures, John Wiley & Sons, 2012

[19] P. Wriggers Nonlinear Finite Element Methods, Springer Science & Business, Media, 2008

[20] Q. Nguyen On the elastic plastic initial-boundary value problem and its numerical integration, Int. J. Numer. Methods Eng., Volume 11 (1977), pp. 817-832

[21] J. Simo; T. Hughes Computational Inelasticity, Springer-Verlag, New York, 1998

[22] K.J. Bathe Finite Element Procedures, Prentice–Hall, 1996

[23] W. Hu; P.F. Thomson An evaluation of a large time increment method, Comput. Struct., Volume 58 (1996), pp. 633-637

[24] P. Despret Simulation numerique de la solidification avec reduction de modele PGD appliquée à la fonderie, University of Technology of Compiègne, France, 2015 PhD thesis (in French)

[25] H. Burlet; C. Cailletaud Modeling of cyclic plasticity in finite element codes (C.S. Desai, ed.), 2nd Int. Conf. on Constitutive Laws for Engineering Materials: Theory and Applications, Elsevier, Tucson, AZ, USA, 1987, pp. 1157-1164

[26] J.-L. Chaboche A review of some plasticity and viscoplasticity constitutive theories, Int. J. Plast., Volume 24 (2008), pp. 1642-1693

[27] P.J. Armstrong; C.O. Frederick A mathematical representation of the multiaxial Bauschinger effect, 1966 (CEGB report No. RD/B/N 731, UK)

Cited by Sources:

Comments - Policy