We derive a variational approach for discretizing fluid–structure interactions, with a particular focus on the dynamics of fluid-conveying elastic tubes. Our method is based on a discretization of the fluid's back-to-labels map and a Lie group discretization of the tube's variables, coupled with an appropriately formulated discrete version of the fluid conservation law. This approach allows the development of geometric numerical schemes for the dynamics of fluid-conveying collapsible tubes, which preserve several intrinsic geometric properties of the continuous system, such as symmetries and symplecticity. In addition, our approach can also be used to derive simplified, but geometrically consistent, low-component models for further analytical and numerical analysis of the system.
Nous proposons une approche variationnelle pour la discrétisation d'interactions fluide–structure, en nous focalisant sur la dynamique de tubes élastiques avec écoulement interne. Notre approche est basée sur une discrétisation des trajectoires inverses du fluide et une discrétisation de type groupe de Lie des variables du tube élastique, couplée à une discrétisation appropriée de la contrainte de préservation du volume de fluide. Notre approche permet le développement de schémas numériques géométriques pour la dynamique des tubes souples avec écoulement interne, qui préservent plusieurs propriétés géométriques intrinsèques du système continu, telles que les symétries et la symplecticité. De plus, notre approche peut être utilisée pour produire des modèles simplifiés et géométriquement consistants, appropriés pour des études analytiques et numériques plus approfondies de ce système.
Accepted:
Published online:
Mots-clés : Intégrateurs variationnels, Interaction fluide–structure, Tubes avec écoulement interne
François Gay-Balmaz 1; Vakhtang Putkaradze 2
@article{CRMECA_2016__344_11-12_769_0, author = {Fran\c{c}ois Gay-Balmaz and Vakhtang Putkaradze}, title = {Variational discretizations for the dynamics of fluid-conveying flexible tubes}, journal = {Comptes Rendus. M\'ecanique}, pages = {769--775}, publisher = {Elsevier}, volume = {344}, number = {11-12}, year = {2016}, doi = {10.1016/j.crme.2016.08.004}, language = {en}, }
TY - JOUR AU - François Gay-Balmaz AU - Vakhtang Putkaradze TI - Variational discretizations for the dynamics of fluid-conveying flexible tubes JO - Comptes Rendus. Mécanique PY - 2016 SP - 769 EP - 775 VL - 344 IS - 11-12 PB - Elsevier DO - 10.1016/j.crme.2016.08.004 LA - en ID - CRMECA_2016__344_11-12_769_0 ER -
François Gay-Balmaz; Vakhtang Putkaradze. Variational discretizations for the dynamics of fluid-conveying flexible tubes. Comptes Rendus. Mécanique, Volume 344 (2016) no. 11-12, pp. 769-775. doi : 10.1016/j.crme.2016.08.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.08.004/
[1] Bending vibrations of a pipe line containing flowing fluid, J. Appl. Mech., Volume 17 (1950), pp. 229-232
[2] Dynamics of a system of articulated pipes conveying fluid I. Theory, Proc. Roy. Soc. A, Volume 261 (1961), pp. 457-486
[3] Dynamics of a system of articulated pipes conveying fluid II. Experiments, Proc. Roy. Soc. A, Volume 261 (1961), pp. 487-499
[4] Unstable oscillation of tubular cantilevers conveying fluid I. Theory, Proc. R. Soc. A, Volume 293 (1966), pp. 512-527
[5] Dynamics of tubular cantilevers conveying fluid, Int. J. Mech. Eng. Sci., Volume 12 (1970), pp. 85-103
[6] Dynamic stability of pipes conveying fluid, J. Sound Vib., Volume 33 (1974), pp. 267-294
[7] Fluid-Structure Interactions. Slender Structures and Axial Flow, vol. 1, Academic Press, London, 1998
[8] Dynamics of a tube conveying fluid | arXiv
[9] The flow-induced instability of long hanging pipes, Eur. J. Mech. A, Solids, Volume 21 (2002), pp. 857-867
[10] Pipes conveying fluid: a model dynamical problem, J. Fluids Struct., Volume 7 (1993), pp. 137-204
[11] Fluid-Structure Interactions. Slender Structures and Axial Flow, vol. 2, Academic Press, London, 2004
[12] Unstable oscillation of tubular cantilevers conveying fluid II. Experiments, Proc. R. Soc. A, Volume 293 (1966), pp. 528-542
[13] Stability and bifurcations of tube conveying flow, J. Phys. Soc. Jpn., Volume 72 (2003), pp. 3106-3112
[14] Transition to chaos of a vertical collapsible tube conveying air flow, J. Phys. Conf. Ser., Volume 166 (2009)
[15]
, Springer (2012), pp. 15-24[16] The non-linear equations of motion of pipes conveying fluid, J. Sound Vib., Volume 169 (1994), pp. 577-599
[17] Nonlinear dynamics of extensible fluid-conveying pipes supported at both ends, J. Fluids Struct., Volume 25 (2009), pp. 535-543
[18] Nonlinear dynamics of cantilevered extensible pipes conveying fluid, J. Sound Vib., Volume 332 (2013), pp. 6405-6418
[19] The nonlinear dynamics of elastic tubes conveying a fluid, Int. J. Solids Struct., Volume 47 (2010), pp. 161-168
[20] A multiparameter, numerical stability analysis of a standing cantilever conveying fluid, SIAM J. Appl. Dyn. Syst., Volume 1 (2002), pp. 190-214
[21] Controversy associated with the so-called “follower forces”: critical overview, Appl. Mech. Rev., Volume 58 (2005), pp. 117-142
[22] Nonlinear dynamics of cantilevered extensible pipes conveying fluid, J. Sound Vib. (2013), pp. 6405-6418
[23] Exact geometric theory for flexible, fluid-conducting tubes, C. R. Mecanique, Volume 342 (2014), pp. 79-84
[24] On flexible tubes conducting fluid: geometric nonlinear theory, stability and dynamics, J. Nonlinear Sci., Volume 25 (2015), pp. 889-936
[25] Multisymplectic Lie group variational integrator for a geometrically exact beam in , Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 3492-3512
[26] Multisymplectic variational integrators and space/time symplecticity, Anal. Appl. (2015), pp. 1-51
[27] Multisymplectic geometry, variational integrators and nonlinear PDEs, Commun. Math. Phys., Volume 199 (1998), pp. 351-395
[28] Discrete mechanics and variational integrators, Acta Numer. (2001), pp. 1-158
[29] The Hamiltonian structure of nonlinear elasticity: the material and convective representations of solids, rods, and plates, Arch. Ration. Mech. Anal., Volume 104 (1988), pp. 125-183
[30] Nonlocal orientation-dependent dynamics of charged strands and ribbons, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 1093-1098
[31] Symmetry reduced dynamics of charged molecular strands, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 811-902
[32] Symmetry reduction of discrete Lagrangian mechanics on Lie groups, J. Geom. Phys., Volume 36 (1999), pp. 140-151
[33] Discrete Lagrangian reduction, discrete Euler–Poincaré equations, and semidirect products, Lett. Math. Phys., Volume 49 (1999), pp. 79-93
Cited by Sources:
Comments - Policy