Starting from the 3D Signorini problem for a family of elastic elliptic shells, we justify that the obstacle problem of an elastic elliptic membrane is the right approximation posed in a 2D domain, when the thickness tends to zero. Specifically, we provide convergence results in the scaled and de-scaled formulations.
Accepté le :
Publié le :
Ángel Rodríguez-Arós 1
@article{CRMECA_2017__345_2_153_0, author = {\'Angel Rodr{\'\i}guez-Ar\'os}, title = {Mathematical justification of an elastic elliptic membrane obstacle problem}, journal = {Comptes Rendus. M\'ecanique}, pages = {153--157}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2017}, doi = {10.1016/j.crme.2016.10.014}, language = {en}, }
Ángel Rodríguez-Arós. Mathematical justification of an elastic elliptic membrane obstacle problem. Comptes Rendus. Mécanique, Volume 345 (2017) no. 2, pp. 153-157. doi : 10.1016/j.crme.2016.10.014. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.10.014/
[1] The obstacle problem for shallow shells in curvilinear coordinates, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010), pp. 1235-1239
[2] The obstacle problem for shallow shells: curvilinear approach, Int. J. Numer. Anal. Model. Ser. B, Volume 2 (2011) no. 1, pp. 1-26
[3] Models of elastic shells in contact with a rigid foundation: an asymptotic approach, J. Elasticity (2016) (submitted)
[4] Mathematical Elasticity, vol. III: Theory of Shells, Stud. Math. Appl., vol. 29, North-Holland Publishing Co., Amsterdam, 2000
[5] Mathematical Elasticity, vol. I: Three-Dimensional Elasticity, Stud. Math. Appl., vol. 20, North-Holland Publishing Co., Amsterdam, 1988
[6] A. Rodríguez-Arós, Mathematical justification of an elastic elliptic membrane obstacle problem: an asymptotic approach, preprint.
- On the justification of viscoelastic flexural shell equations, Computers Mathematics with Applications, Volume 77 (2019) no. 11, p. 2933 | DOI:10.1016/j.camwa.2018.08.062
- Asymptotic analysis of unilateral contact problems for linearly elastic shells: Error estimates in the membrane case, Nonlinear Analysis: Real World Applications, Volume 48 (2019), p. 40 | DOI:10.1016/j.nonrwa.2019.01.009
- Mathematical justification of the obstacle problem for elastic elliptic membrane shells, Applicable Analysis, Volume 97 (2018) no. 8, p. 1261 | DOI:10.1080/00036811.2017.1337894
- Models of Elastic Shells in Contact with a Rigid Foundation: An Asymptotic Approach, Journal of Elasticity, Volume 130 (2018) no. 2, p. 211 | DOI:10.1007/s10659-017-9638-1
Cité par 4 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier