Comptes Rendus
Simulation-based conceptual design of an acoustic metamaterial with full band gap using an air-based 1-3 piezoelectric composite for ultrasonic noise control
Comptes Rendus. Mécanique, Volume 345 (2017) no. 2, pp. 137-152.

This paper aims at proposing a novel type of acoustic metamaterials with complete band gap composed of piezoelectric rods with square array as inclusions embedded in an air background (matrix). A modified plane wave expansion method accompanied with the principles of the Bloch–Floquet method with electromechanical coupling effect and also impedance spectra are used to get a band frequency and to investigate the passband for the selected cut of piezoelectric rods. We investigate both the electromechanical coupling coefficient and mechanical quality factor and their dependency to passband and bandwidth, which depends on both the density and the wave impedance of the matrix and the inclusions (rods). The ratio of the volume of inclusion to the matrix is used to define the fill factor or the so-called inclusion ratio, to introduce the bandwidth as a function of that. Furthermore, the fabrication method is presented in this paper. The results make a suitable foundation for design purposes and may develop an inherently passive ultrasonic noise control. In addition, the results provide the required guidance for a simulation-based design of elastic wave filters or wave guide that might be useful in high-precision mechanical systems operated in certain frequency ranges and switches made of piezoelectric materials; they also propose a novel type of elastic metamaterials, which is independent of the wave direction and has an equal sensitivity in all directions in which it reacts omnidirectionally and mitigates the occupational noise exposure.

Published online:
DOI: 10.1016/j.crme.2016.11.003
Keywords: Phononic crystal, Acoustic band gaps, Passive control, Piezoelectricity, Vibration isolation, Ultrasonic noise control

Shahrokh Rezaei 1; Morteza Eskandari-Ghadi 1; Mohammad Rahimian 1

1 School of Civil Engineering, College of Engineering, University of Tehran, P.O. Box: 4563-11155, Tehran, Iran
     author = {Shahrokh Rezaei and Morteza Eskandari-Ghadi and Mohammad Rahimian},
     title = {Simulation-based conceptual design of an acoustic metamaterial with full band gap using an air-based 1-3 piezoelectric composite for ultrasonic noise control},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {137--152},
     publisher = {Elsevier},
     volume = {345},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crme.2016.11.003},
     language = {en},
AU  - Shahrokh Rezaei
AU  - Morteza Eskandari-Ghadi
AU  - Mohammad Rahimian
TI  - Simulation-based conceptual design of an acoustic metamaterial with full band gap using an air-based 1-3 piezoelectric composite for ultrasonic noise control
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 137
EP  - 152
VL  - 345
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2016.11.003
LA  - en
ID  - CRMECA_2017__345_2_137_0
ER  - 
%0 Journal Article
%A Shahrokh Rezaei
%A Morteza Eskandari-Ghadi
%A Mohammad Rahimian
%T Simulation-based conceptual design of an acoustic metamaterial with full band gap using an air-based 1-3 piezoelectric composite for ultrasonic noise control
%J Comptes Rendus. Mécanique
%D 2017
%P 137-152
%V 345
%N 2
%I Elsevier
%R 10.1016/j.crme.2016.11.003
%G en
%F CRMECA_2017__345_2_137_0
Shahrokh Rezaei; Morteza Eskandari-Ghadi; Mohammad Rahimian. Simulation-based conceptual design of an acoustic metamaterial with full band gap using an air-based 1-3 piezoelectric composite for ultrasonic noise control. Comptes Rendus. Mécanique, Volume 345 (2017) no. 2, pp. 137-152. doi : 10.1016/j.crme.2016.11.003.

[1] B. Smagowska; M. Pawlaczyk-Łuszczyńska Effects of ultrasonic noise on the human body—a bibliographic review, Int. J. Occup. Saf. Ergon., Volume 19 (2013) no. 2, pp. 195-202

[2] J.D. Joannopoulos; S.G. Johnson; J.N. Winn et al. Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 2011

[3] Y. Pennec; B. Djafari-Rouhani; J.O. Vasseur et al. Tunable filtering and demultiplexing in phononic crystals with hollow cylinders, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 69 (2004) no. 4 | DOI

[4] C.M. Soukoulis Photonic Crystals and Light Localization in the 21st Century, Springer, 2001

[5] E.L. Thomas Opportunities in Protection Materials Science and Technology for Future Army Applications, Wiley Online Library, 2011

[6] M. Sigalas; E.N. Economou Band structure of elastic waves in two dimensional systems, Solid State Commun., Volume 86 (1993) no. 3, pp. 141-143

[7] M. Kushwaha; P. Halevi; L. Dobrzynski et al. Acoustic band structure of periodic elastic composites, Phys. Rev. Lett., Volume 71 (1993) no. 13, pp. 2022-2025 | DOI

[8] Y. Ding; Z. Liu; C. Qiu et al. Metamaterial with simultaneously negative bulk modulus and mass density, Phys. Rev. Lett., Volume 99 (2007) no. 9

[9] A. Bergamini; T. Delpero; L. De Simoni et al. Phononic crystal with adaptive connectivity, Adv. Mater., Volume 26 (2014) no. 9, pp. 1343-1347

[10] M. Torres; F. Montero de Espinosa; D. García-Pablos et al. Sonic band gaps in finite elastic media: surface states and localization phenomena in linear and point defects, Phys. Rev. Lett., Volume 82 (1999) no. 15, pp. 3054-3057 | DOI

[11] M. Kafesaki; M.M. Sigalas; N. García Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials, Phys. Rev. Lett., Volume 85 (2000) no. 19, pp. 4044-4047 | DOI

[12] A. Khelif; B. Djafari-Rouhani; J. Vasseur et al. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials, Phys. Rev. B, Volume 68 (2003) no. 2 | DOI

[13] T. Miyashita Full band gaps of sonic crystals made of acrylic cylinders in air – numerical and experimental investigations, Jpn. J. Appl. Phys., Part 1, Reg. Pap. Short Notes Rev. Pap., Volume 41 (2002) no. 5S, pp. 3170-3175

[14] A. Khelif; A. Choujaa; S. Benchabane et al. Guiding and bending of acoustic waves in highly confined phononic crystal waveguides, Appl. Phys. Lett., Volume 84 (2004) no. 22, pp. 4400-4402

[15] A. Khelif; B. Djafari-Rouhani; J. Vasseur et al. Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal, Phys. Rev. B, Volume 65 (2002) no. 17 | DOI

[16] Y. Pennec; B. Djafari-Rouhani; J.O. Vasseur et al. Acoustic channel drop tunneling in a phononic crystal, Appl. Phys. Lett., Volume 87 (2005) no. 26

[17] T. Gorishnyy; C.K. Ullal; M. Maldovan et al. Hypersonic phononic crystals, Phys. Rev. Lett., Volume 94 (2005) no. 11 | DOI

[18] A.S. Phani; J. Woodhouse; N.A. Fleck Wave propagation in two-dimensional periodic lattices, J. Acoust. Soc. Am., Volume 119 (2006) no. 4, pp. 1995-2005

[19] M.N. Armenise; C.E. Campanella; C. Ciminelli et al. Phononic and photonic band gap structures: modelling and applications, Phys. Proc., Volume 3 (2010) no. 1, pp. 357-364

[20] J.Y. Yeh Control analysis of the tunable phononic crystal with electrorheological material, Physica B, Condens. Matter, Volume 400 (2007) no. 1–2, pp. 137-144

[21] J.-F. Robillard; O.B. Matar; J.O. Vasseur et al. Tunable magnetoelastic phononic crystals, Appl. Phys. Lett., Volume 95 (2009) no. 12

[22] L.-Y. Wu; M.-L. Wu; L.-W. Chen The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer, Smart Mater. Struct., Volume 18 (2009) no. 1

[23] M. Ruzzene; A.M. Baz Attenuation and localization of wave propagation in periodic rods using shape memory inserts, SPIE's 7th Annual International Symposium on Smart Structures and Materials, 2000, pp. 389-407

[24] Y.-Z. Wang; F.-M. Li; W.-H. Huang et al. Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals, Int. J. Solids Struct., Volume 45 (2008) no. 14–15, pp. 4203-4210

[25] X.-Y. Zou; Q. Chen; B. Liang et al. Control of the elastic wave bandgaps in two-dimensional piezoelectric periodic structures, Smart Mater. Struct., Volume 17 (2008) no. 1

[26] J. Zhao; Y. Pan; Z. Zhong Theoretical study of shear horizontal wave propagation in periodically layered piezoelectric structure, J. Appl. Phys., Volume 111 (2012) no. 6

[27] S.-E. Park; T.R. Shrout Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 44 (1997) no. 5, pp. 1140-1147

[28] E. Sun; W. Cao; W. Jiang et al. Complete set of material properties of single domain 0.24Pb(In1/2Nb1/2)O3–0.49Pb(Mg1/3Nb2/3)O3–0.27PbTiO3 single crystal and the orientation effects, Appl. Phys. Lett., Volume 99 (2011) no. 3, pp. 32901-32903

[29] J.P. Dowling, M. Scalora, M.J. Bloemer, et al., Photonic bandgap apparatus and method for delaying photonic signals, Google Patents, 1998.

[30] S. Johnson; J. Joannopoulos Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Opt. Express, Volume 8 (2001) no. 3, pp. 173-190

[31] M. Collet; M. Ouisse; M. Ruzzene et al. Floquet–Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems, Int. J. Solids Struct., Volume 48 (2011) no. 20, pp. 2837-2848

[32] Y. Wang; W. Song; E. Sun et al. Tunable passband in one-dimensional phononic crystal containing a piezoelectric 0.62Pb(Mg1/3Nb2/3)O3–0.38PbTiO3 single crystal defect layer, Phys. E, Volume 60 (2014), pp. 37-41

[33] N. Jalili Piezoelectric-Based Vibration Control: From Macro to Micro/Nano Scale Systems, Springer Science & Business Media, 2009

[34] K. Haisch; M.Z. Atashbar; B.J. Bazuin Identification of acoustic wave modes in piezoelectric substrates, 2005 IEEE International Conference on Electro Information Technology, 2005, p. 5

[35] R. McIntosh; A.S. Bhalla; R. Guo Finite element modeling of acousto-optic effect and optimization of the figure of merit, Proc. SPIE 8497, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VI, October 15, 2012 , p. 849703

[36] R. McIntosh, Directional Dependence of Acousto-Optic Figure of Merit,, Wolfram Demonstrations Project, Published: February 13, 2013.

[37] R.E. Newnham Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, Oxford, UK, 2005

[38] Y. Pennec; J.O. Vasseur; B. Djafari-Rouhani et al. Two-dimensional phononic crystals: examples and applications, Surf. Sci. Rep., Volume 65 (2010) no. 8, pp. 229-291

[39] M.S. Kushwaha; P. Halevi; G. Martínez et al. Theory of acoustic band structure of periodic elastic composites, Phys. Rev. B, Volume 49 (1994) no. 4, pp. 2313-2322

[40] F. Meseguer; M. Holgado; D. Caballero et al. Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal, Phys. Rev. B, Volume 59 (1999) no. 19, pp. 12169-12172

[41] R. Antos; M. Veis Fourier Factorization in the Plane Wave Expansion Method in Modeling Photonic Crystals, INTECH Open Access Publisher, 2012

[42] M. Wilm; S. Ballandras; V. Laude et al. A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures, J. Acoust. Soc. Am., Volume 112 (2002) no. 3, pp. 943-952

[43] M.M. Sigalas; E.N. Economou Elastic and acoustic wave band structure, J. Sound Vib., Volume 158 (1992) no. 2, pp. 377-382

[44] Y.Y. Chen; Z. Ye Theoretical analysis of acoustic stop bands in two-dimensional periodic scattering arrays, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 64 (2001) no. 3 | DOI

[45] Y.-Y. Chen; Z. Ye Acoustic attenuation by two-dimensional arrays of rigid cylinders, Phys. Rev. Lett., Volume 87 (2001) no. 18, p. 4 | arXiv

[46] Y. Cao; Z. Hou; Y. Liu Convergence problem of plane-wave expansion method for phononic crystals, Phys. Lett. A, Volume 327 (2004) no. 2–3, pp. 247-253

[47] V. Laude; M. Wilm; S. Benchabane et al. Full band gap for surface acoustic waves in a piezoelectric phononic crystal, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., Volume 71 (2005) no. 3 | DOI

[48] J.O. Vasseur; B. Djafari-Rouhani; L. Dobrzynski et al. Complete acoustic band gaps in periodic fibre reinforced composite materials: the carbon/epoxy composite and some metallic systems, J. Phys. Condens. Matter, Volume 6 (1994) no. 42, p. 8759

[49] R. McIntosh, Impedance Spectra of Piezoelectric Rods,, Wolfram Demonstrations Project, Published: March 20, 2014.

[50] K.F. Graf Wave Motion in Elastic Solids, Ohio State University Press, Columbus, 1975

[51] D.P. Elford; L. Chalmers; G.M. Swallowe et al. Vibrational Modes of Slotted Cylinders, European Acoustics Association/Slovenian Acoustical Society/Alps Adria Acoustics Association, 2010

[52] T. Miyashita Sonic crystals and sonic wave-guides, Meas. Sci. Technol., Volume 16 (2005) no. 5, p. R47-R63

[53] D.P. Elford; L. Chalmers; F.V. Kusmartsev et al. Matryoshka locally resonant sonic crystal, J. Acoust. Soc. Am., Volume 130 (2011) no. 5, pp. 2746-2755

Cited by Sources:

Comments - Policy