In this note, we announce a complete classification of the stability of periodic roll-wave solutions of the viscous shallow water equations, from their onset at Froude number up to the infinite Froude limit. For intermediate Froude numbers, we obtain numerically a particularly simple power-law relation between F and the boundaries of the region of stable periods, which appears potentially useful in hydraulic engineering applications. In the asymptotic regime (onset), we provide an analytic expression of the stability boundaries, whereas in the limit , we show that roll waves are always unstable.
Les roll waves sont des ondes progressives périodiques hydrodynamiques, modélisées comme des solutions des équations de Saint-Venant. Dans cette note, nous annonçons une classification complète des roll waves stables de leur apparition à F (le nombre de Froude) proche de 2 à . Pour les nombres de Froude intermédiaires, nous avons mené une étude numérique des critères de stabilité spectrale. Dans le régime asymptotique , nous donnons une expression analytique des limites de stabilité, alors que pour , nous montrons que les roll waves sont toujours instables.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Écoulements peu profonds, Roll waves
Blake Barker 1; Mathew A. Johnson 2; Pascal Noble 3; Luis Miguel Rodrigues 4; Kevin Zumbrun 5
@article{CRMECA_2017__345_2_125_0, author = {Blake Barker and Mathew A. Johnson and Pascal Noble and Luis Miguel Rodrigues and Kevin Zumbrun}, title = {Note on the stability of viscous roll waves}, journal = {Comptes Rendus. M\'ecanique}, pages = {125--129}, publisher = {Elsevier}, volume = {345}, number = {2}, year = {2017}, doi = {10.1016/j.crme.2016.11.001}, language = {en}, }
TY - JOUR AU - Blake Barker AU - Mathew A. Johnson AU - Pascal Noble AU - Luis Miguel Rodrigues AU - Kevin Zumbrun TI - Note on the stability of viscous roll waves JO - Comptes Rendus. Mécanique PY - 2017 SP - 125 EP - 129 VL - 345 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2016.11.001 LA - en ID - CRMECA_2017__345_2_125_0 ER -
Blake Barker; Mathew A. Johnson; Pascal Noble; Luis Miguel Rodrigues; Kevin Zumbrun. Note on the stability of viscous roll waves. Comptes Rendus. Mécanique, Volume 345 (2017) no. 2, pp. 125-129. doi : 10.1016/j.crme.2016.11.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.11.001/
[1] Stability of viscous St. Venant roll waves: from onset to infinite-Froude number limit, Nonlinear Sci. (2016) (in press) | DOI
[2] Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations, Invent. Math., Volume 197 (2014) no. 1, pp. 115-213
[3] Periodic-coefficient damping estimates, and stability of large-amplitude roll waves in inclined thin film flow, SIAM J. Math. Anal., Volume 48 (2016) no. 1, pp. 268-280
[4] Development of roll-wave trains in open channels, J. Hydraul. Div., Volume 95 (1969) no. HY4, pp. 1401-1427
[5] Nonlinear stability of viscous roll waves, SIAM J. Math. Anal., Volume 43 (2011) no. 2, pp. 557-611
[6] Stabilité de trains d'ondes dans un canal découvert, C. R. Mecanique, Volume 330 (2002), pp. 291-295
[7] Co-periodic stability of periodic waves in some Hamiltonian PDEs, Nonlinearity, Volume 29 (2016) no. 11, pp. 3241-3308
[8] A new model of roll waves: comparison with Brock's experiments, J. Fluid Mech., Volume 698 (2012), pp. 374-405
[9] STABLAB: a MATLAB-based numerical library for Evans function computation, 2009 https://github.com/nonlinear-waves/stablab.git (available at)
[10] Weak nonlinear waves in channel flow with internal dissipation, Stud. Appl. Math., Volume 105 (2000), p. 143
[11] Spectral stability of periodic wave trains of the Korteweg–de Vries/Kuramoto–Sivashinsky equation in the Korteweg–de Vries limit, Trans. Amer. Math. Soc., Volume 367 (2015) no. 3, pp. 2159-2212
[12] Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow, J. Differ. Equ., Volume 257 (2014) no. 8, pp. 2950-2983
[13] On the evolution of roll waves, J. Fluid Mech., Volume 245 (1992), pp. 249-261
[14] Dynamics of roll waves, J. Fluid Mech., Volume 514 (2004), pp. 1-33
[15] Three dimensional instabilities of film flows, Phys. Fluids A, Volume 7 (1995), pp. 55-67
Cited by Sources:
Comments - Policy