Comptes Rendus
Three-dimensional ultrasonic colloidal crystals
[Cristaux colloïdaux ultrasonores tridimensionnels]
Comptes Rendus. Physique, Volume 17 (2016) no. 5, pp. 501-511.

L'assemblée colloïdale représente une méthode puissante pour la fabrication de matériaux fonctionnels. Dans cet article, nous décrivons comment les forces de rayonnement acoustique peuvent guider l'assemblage de particules colloïdales dans des structures qui servent d'éléments microscopiques dans les dispositifs à base de méta-matériaux acoustiques ou se comportent comme des cristaux phononiques. En utilisant un simple système orthogonal tridimensionnel, nous montrons que nombre de structures colloïdales à symétrie orthorhombique peuvent être assemblées, avec des ondes de pression stationnaires fonctionnant à des fréquences de l'ordre de quelques mégahertz (MHz). Ces structures permettent un ajustement rapide des propriétés acoustiques et fournissent une nouvelle plate-forme pour les applications de métamatériaux dynamiques.

Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications.

Publié le :
DOI : 10.1016/j.crhy.2016.02.007
Keywords: Colloidal crystals, Acoustic assembly, Phononic crystals, Acoustic metamaterials
Mot clés : Cristaux colloïdaux, Assemblée acoustique, Cristaux phononiques, Métamatériaux acoustiques
Mihai Caleap 1 ; Bruce W. Drinkwater 1

1 Faculty of Engineering, University of Bristol, BS8 1TR, United Kingdom
@article{CRPHYS_2016__17_5_501_0,
     author = {Mihai Caleap and Bruce W. Drinkwater},
     title = {Three-dimensional ultrasonic colloidal crystals},
     journal = {Comptes Rendus. Physique},
     pages = {501--511},
     publisher = {Elsevier},
     volume = {17},
     number = {5},
     year = {2016},
     doi = {10.1016/j.crhy.2016.02.007},
     language = {en},
}
TY  - JOUR
AU  - Mihai Caleap
AU  - Bruce W. Drinkwater
TI  - Three-dimensional ultrasonic colloidal crystals
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 501
EP  - 511
VL  - 17
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.02.007
LA  - en
ID  - CRPHYS_2016__17_5_501_0
ER  - 
%0 Journal Article
%A Mihai Caleap
%A Bruce W. Drinkwater
%T Three-dimensional ultrasonic colloidal crystals
%J Comptes Rendus. Physique
%D 2016
%P 501-511
%V 17
%N 5
%I Elsevier
%R 10.1016/j.crhy.2016.02.007
%G en
%F CRPHYS_2016__17_5_501_0
Mihai Caleap; Bruce W. Drinkwater. Three-dimensional ultrasonic colloidal crystals. Comptes Rendus. Physique, Volume 17 (2016) no. 5, pp. 501-511. doi : 10.1016/j.crhy.2016.02.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.02.007/

[1] E. Yablonovitch Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., Volume 58 (1987) no. 20, pp. 2059-2062 | DOI

[2] X. Zhang; Z. Liu Superlenses to overcome the diffraction limit, Nat. Mater., Volume 7 (2008) no. 6, pp. 435-441 | DOI

[3] C. García-Meca; S. Carloni; C. Barceló; G. Jannes; J. Sánchez-Dehesa; A. Martínez Analogue transformations in physics and their application to acoustics, Sci. Rep., Volume 3 (2013), p. 2009 | DOI

[4] S. Zhang; C. Xia; N. Fang Broadband acoustic cloak for ultrasound waves, Phys. Rev. Lett., Volume 106 (2011) no. 2 | DOI

[5] H. Zhu; F. Semperlotti Metamaterial based embedded acoustic filters for structural applications, AIP Adv., Volume 3 (2013) no. 9 | DOI

[6] B. Liang; X.S. Guo; J. Tu; D. Zhang; J.C. Cheng An acoustic rectifier, Nat. Mater., Volume 9 (2010) no. 12, pp. 989-992 | DOI

[7] B. Liang; B. Yuan; J. Cheng Acoustic diode: rectification of acoustic energy flux in one-dimensional systems, Phys. Rev. Lett., Volume 103 (2009) no. 10 | DOI

[8] Y. Li; B. Liang; Z. Gu; X. Zou; J. Cheng Unidirectional acoustic transmission through a prism with near-zero refractive index, Appl. Phys. Lett., Volume 103 (2013) no. 5 | DOI

[9] J. Mei; G. Ma; M. Yang; Z. Yang; W. Wen; P. Sheng Dark acoustic metamaterials as super absorbers for low-frequency sound, Nat. Commun., Volume 3 (2012), p. 756 | DOI

[10] P. Pieranski Colloidal crystals, Contemp. Phys., Volume 24 (2006) no. 1, pp. 25-73 | DOI

[11] W. Cheng; J. Wang; U. Jonas; G. Fytas; N. Stefanou Observation and tuning of hypersonic bandgaps in colloidal crystals, Nat. Mater., Volume 5 (2006) no. 10, pp. 830-836 | DOI

[12] I.E. Psarobas; A. Modinos; R. Sainidou; N. Stefanou Acoustic properties of colloidal crystals, Phys. Rev. B, Condens. Matter, Volume 65 (2002) no. 6 | DOI

[13] J. Baumgartl; M. Zvyagolskaya; C. Bechinger Tailoring of phononic band structures in colloidal crystals, Phys. Rev. Lett., Volume 99 (2007) no. 20 | DOI

[14] M. Caleap; B.W. Drinkwater Acoustically trapped colloidal crystals that are reconfigurable in real time, Proc. Natl. Acad. Sci. USA, Volume 111 (2014) no. 17, pp. 6226-6230 | DOI

[15] X. Chen; R.E. Apfel Radiation force on a spherical object in an axisymmetric wave field and its application to the calibration of high-frequency transducers, J. Acoust. Soc. Am., Volume 99 (1996) no. 2, p. 713 | DOI

[16] L.P. Gor'kov On the forces acting on a small particle in an acoustical field in an ideal fluid, Sov. Phys. Dokl., Volume 6 (1962), pp. 773-775

[17] A. Grinenko; C.K. Ong; C.R.P. Courtney; P.D. Wilcox; B.W. Drinkwater Efficient counter-propagating wave acoustic micro-particle manipulation, Appl. Phys. Lett., Volume 101 (2012), p. 233501 | DOI

[18] C.R.P. Courtney; C.-K. Ong; B.W. Drinkwater; A.L. Bernassau; P.D. Wilcox; D.R.S. Cumming Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 468 (2011) no. 2138, pp. 337-360 | DOI

[19] C.R.P. Courtney; B.W. Drinkwater; C.E.M. Demore; S. Cochran; A. Grinenko; P.D. Wilcox Dexterous manipulation of microparticles using Bessel-function acoustic pressure fields, Appl. Phys. Lett., Volume 102 (2013), p. 123508 | DOI

[20] M. Maldovan Sound and heat revolutions in phononics, Nature, Volume 503 (2013) no. 7475, pp. 209-217 | DOI

[21] J. Gomis-Bresco; D. Navarro-Urrios; M. Oudich et al. A one-dimensional optomechanical crystal with a complete phononic band gap, Nat. Commun., Volume 5 (2014), p. 4452 | DOI

[22] Bioinspiration and Biomimicry in Chemistry: Reverse-Engineering Nature (G. Swiegers, ed.), John Wiley & Sons, 2012

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Simulation-based conceptual design of an acoustic metamaterial with full band gap using an air-based 1-3 piezoelectric composite for ultrasonic noise control

Shahrokh Rezaei; Morteza Eskandari-Ghadi; Mohammad Rahimian

C. R. Méca (2017)


Time-reversed waves and super-resolution

Mathias Fink; Julien de Rosny; Geoffroy Lerosey; ...

C. R. Phys (2009)


Phononic crystals: Harnessing the propagation of sound, elastic waves, and phonons

Vincent Laude

C. R. Phys (2016)