Comptes Rendus
Heterogeneous linearly piezoelectric patches bonded on a linearly elastic body
Comptes Rendus. Mécanique, Volume 345 (2017) no. 3, pp. 184-191.

In [1], we studied the response of a thin homogeneous piezoelectric patch perfectly bonded to an elastic body. Here we extend this study to the case of a very thin heterogeneous patch made of a periodic distribution of piezoelectric inclusions embedded in a linearly elastic matrix and perfectly bonded to an elastic body. Through a rigorous mathematical analysis, we show that various asymptotic models arise, depending on the electromechanical loading together with the relative behavior between the thickness of the patch and the size of the piezoelectric inclusions.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.01.005
Mots-clés : Piezoelectric patches, Dimension reduction, Periodic homogenization

Christian Licht 1, 2, 3; Somsak Orankitjaroen 2, 3; Patcharakorn Rojchanasuwakul 2; Thibaut Weller 1

1 LMGC – UMR 5508 CNRS, Université de Montpellier, cc048, 163, rue Auguste-Broussonnet, 34090 Montpellier, France
2 Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
3 Centre of Excellence in Mathematics, CHE, Bangkok 10400, Thailand
@article{CRMECA_2017__345_3_184_0,
     author = {Christian Licht and Somsak Orankitjaroen and Patcharakorn Rojchanasuwakul and Thibaut Weller},
     title = {Heterogeneous linearly piezoelectric patches bonded on a linearly elastic body},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {184--191},
     publisher = {Elsevier},
     volume = {345},
     number = {3},
     year = {2017},
     doi = {10.1016/j.crme.2017.01.005},
     language = {en},
}
TY  - JOUR
AU  - Christian Licht
AU  - Somsak Orankitjaroen
AU  - Patcharakorn Rojchanasuwakul
AU  - Thibaut Weller
TI  - Heterogeneous linearly piezoelectric patches bonded on a linearly elastic body
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 184
EP  - 191
VL  - 345
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2017.01.005
LA  - en
ID  - CRMECA_2017__345_3_184_0
ER  - 
%0 Journal Article
%A Christian Licht
%A Somsak Orankitjaroen
%A Patcharakorn Rojchanasuwakul
%A Thibaut Weller
%T Heterogeneous linearly piezoelectric patches bonded on a linearly elastic body
%J Comptes Rendus. Mécanique
%D 2017
%P 184-191
%V 345
%N 3
%I Elsevier
%R 10.1016/j.crme.2017.01.005
%G en
%F CRMECA_2017__345_3_184_0
Christian Licht; Somsak Orankitjaroen; Patcharakorn Rojchanasuwakul; Thibaut Weller. Heterogeneous linearly piezoelectric patches bonded on a linearly elastic body. Comptes Rendus. Mécanique, Volume 345 (2017) no. 3, pp. 184-191. doi : 10.1016/j.crme.2017.01.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.01.005/

[1] C. Licht; S. Orankitjaroen; P. Viriyasrisuwattana; T. Weller Bonding a linearly piezoelectric patch on a linearly elastic body, C. R. Mecanique, Volume 342 (2014) no. 4, pp. 234-239

[2] E. Canon; M. Lenczner Modelling of thin elastic plates with small piezoelectric inclusions and distributed electronic circuits. Models for inclusions that are small with respect to the thickness of the plate, J. Elast., Volume 55 (1999) no. 2, pp. 111-141

[3] E. Canon; M. Lenczner Modelling of thin isotropic elastic plates with small piezoelectric inclusions and distributed electric circuits. Models for inclusions larger or comparable to the thickness of the plate, Math. Methods Appl. Sci., Volume 38 (2015) no. 1, pp. 66-86

[4] T. Weller; C. Licht Asymptotic modeling of thin piezoelectric plates, Ann. Solid Struct. Mech., Volume 1 (2010) no. 3, pp. 173-188

[5] J.N. Reddy On laminated composite plates with integrated sensors and actuators, Eng. Struct., Volume 21 (1999) no. 7, pp. 568-593

[6] G. Nguetseng A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., Volume 20 (1989) no. 3, pp. 608-623

[7] G. Allaire Homogenization and two-scale convergence, SIAM J. Math. Anal., Volume 23 (1992) no. 6, pp. 1482-1518

[8] P.G. Ciarlet Mathematical Elasticity, volume II: Theory of Plates, vol. 27, Elsevier Science B.V., 1997

Cited by Sources:

Comments - Policy