Comptes Rendus
2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material
Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 248-258.

The aim of this work was to simulate in two dimensions the spatio-temporal evolution of the moisture content, the temperature, the solid (dry matter) concentration, the dry product total porosity, the gas porosity, and the mechanical stress within a deformable and unsaturated product during convective drying. The material under study was an elongated cellulose–clay composite sample with a square section placed in hot air flow. Currently, this innovative composite is used in the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation (moisture, insects, etc.). A comprehensive and rigorous hydrothermal model had been merged with a dynamic linear viscoelasticity model based on Bishop's effective stress theory, assuming that the stress tensor is the sum of solid, liquid, and gas stresses. The material viscoelastic properties were measured by means of stress relaxation tests for different water contents. The viscoelastic behaviour was described by a generalized Maxwell model whose parameters were correlated to the water content. The equations of our model were solved by means of the ‘COMSOL Multiphysics’ software. The hydrothermal part of the model was validated by comparison with experimental drying curves obtained in a laboratory hot-air dryer. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of material potential damage. The sample shape was also predicted all over the drying process.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.02.004
Mots clés : Modelling, Unsaturated cellulosic-clay composite, Convective drying, Viscoelastic stress, Cracking risk
Lamine Hassini 1 ; Lamloumi Raja 1 ; Gisèle Laure Lecompte-Nana 2 ; Mohamed Afif Elcafsi 1

1 University of Tunis El Manar, Faculté des sciences de Tunis, Laboratoire d'énergétique et des transferts thermique et massique (LETTM), Tunisia
2 Université of Limoges, Laboratoire de science des procédés céramiques et traitements de surface (SPCTS), UMR CNRS 7315, Centre européen de la céramique, 12, rue Atlantis, 87068 Limoges cedex, France
@article{CRMECA_2017__345_4_248_0,
     author = {Lamine Hassini and Lamloumi Raja and Gis\`ele Laure Lecompte-Nana and Mohamed Afif Elcafsi},
     title = {2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {248--258},
     publisher = {Elsevier},
     volume = {345},
     number = {4},
     year = {2017},
     doi = {10.1016/j.crme.2017.02.004},
     language = {en},
}
TY  - JOUR
AU  - Lamine Hassini
AU  - Lamloumi Raja
AU  - Gisèle Laure Lecompte-Nana
AU  - Mohamed Afif Elcafsi
TI  - 2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 248
EP  - 258
VL  - 345
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2017.02.004
LA  - en
ID  - CRMECA_2017__345_4_248_0
ER  - 
%0 Journal Article
%A Lamine Hassini
%A Lamloumi Raja
%A Gisèle Laure Lecompte-Nana
%A Mohamed Afif Elcafsi
%T 2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material
%J Comptes Rendus. Mécanique
%D 2017
%P 248-258
%V 345
%N 4
%I Elsevier
%R 10.1016/j.crme.2017.02.004
%G en
%F CRMECA_2017__345_4_248_0
Lamine Hassini; Lamloumi Raja; Gisèle Laure Lecompte-Nana; Mohamed Afif Elcafsi. 2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material. Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 248-258. doi : 10.1016/j.crme.2017.02.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.02.004/

[1] P. Perré; J. Passard A physical and mathematical model able to predict the stress field in wood over a wide range of drying conditions, Dry. Technol., Volume 22 (2004) no. 1–2, pp. 27-44

[2] J. Banaszak; S.J. Kowalski Theoretical and experimental analysis of stresses and fractures in clay like materials during drying, Chem. Eng. Process., Volume 44 (2005), pp. 497-503

[3] R. Peczalski; D. Falgon; A. Julien; J.C. Boyer; E. Vidal-Sallé Impact of density gradients on the stress level within a green ceramic compact during drying, Dry. Technol., Volume 23 (2005), pp. 1-82

[4] R. Rémond; J. Passard; P. Perré The effect of temperature and moisture content on the mechanical behaviour of wood: a comprehensive model applied to drying and bending, Eur. J. Mech. A, Solids, Volume 26 (2007), pp. 558-572

[5] S.J. Kowalski Control of mechanical processes in drying. Theory and experiment, Chem. Eng. Sci., Volume 65 (2010), pp. 890-899

[6] L. Hassini; R. Peczalski; J.-L. Gelet Drying of granular medium by hot air and microwaves. Modeling and prediction of internal gas pressure and binder distribution, Powder Technol., Volume 286 (2015), pp. 636-644

[7] G. Musielak Possibility of clay damage during drying, Dry. Technol., Volume 19 (2001) no. 8, pp. 1645-1659

[8] K. Khalfaoui; S. Chemkhi; F. Zagrouba Modeling and stress analysis during drying of a deformable and saturated porous medium, Dry. Technol., Volume 31 (2013) no. 10, pp. 1124-1137

[9] S. Chemkhi; F. Zagrouba; A. Bellagi Mathematical model for drying of highly shrinkage media, Dry. Technol., Volume 22 (2004) no. 5, pp. 1023-1039

[10] Y. Itaya; S. Taniguchi; M. Hasatani A numerical study of transient deformation and stress behavior of a clay slab during drying, Dry. Technol., Volume 15 (1997) no. 1, pp. 1-21

[11] J. Jiang; J. Lu; R. Huang; X. Li Effects of time and temperature on the viscoelastic properties of Chinese fir wood, Dry. Technol., Volume 27 (2009) no. 11, pp. 1229-1234

[12] Z.X. Gong; A.S. Mujumdar; Y. Itaya; S. Mori; M. Hasatani Drying of clay and nonclay media: heat and mass transfer and quality aspects, Dry. Technol., Volume 16 (1998) no. 6, pp. 1119-1152

[13] A. Léonard; S. Blacher; M. Crine; W. Jomaa Evolution of mechanical properties and final textural properties of resorcinol-formaldehyde xerogels during ambient air drying, J. Non-Cryst. Solids, Volume 354 (2008) no. 10–11, pp. 831-838

[14] L. Hassini; R. Peczalski; P. Laurent; S. Azzouz 2-D hydro-viscoelastic model for convective drying of highly deformable saturated product, Dry. Technol., Volume 33 (2015), pp. 1872-1882

[15] A.W. Bishop The principle of effective stress, Tekn. Ukebl., Volume 39 (1959), pp. 859-863

[16] O. Coussy; P. Dangla Approche énergétique du comportement des sols non saturés (O. Coussy; J.-M. Fleureau, eds.), Mécanique des sols non saturés, Lavoisier, Paris, 2002, pp. 137-174

[17] W.G. Gray; B.A. Schrefler Analysis of the solid phase stress tensor in multiphase porous media, Int. J. Numer. Anal. Methods Geomech., Volume 31 (2007) no. 4, pp. 541-581

[18] V.N.M. Rao; D.D. Hamann; J.R. Hammerle Stress analysis of a viscoelastic sphere subjected to temperature and moisture gradients, J. Agric. Eng. Res., Volume 20 (1975) no. 3, pp. 283-293

[19] R. Lamloumi Comportement des matériaux minéraux de grande diffusion lors du séchageétude expérimentale et modélisation, Université de Tunis El Manar, Tunisia & Université de Limoges, France, 2007 (PhD thesis)

[20] P. Salagnac; P. Glouannec; D. Lecharpentier Numerical modeling of heat and mass transfer in porous medium during combined hot air, infrared and microwaves drying, Int. J. Heat Mass Transf., Volume 47 (2004), pp. 4479-4489

[21] T. Constant; C. Moyne; P. Perré Drying with internal heat generation: theoretical aspects and application to microwave heating, AIChE J., Volume 42 (1996) no. 2, pp. 359-368

[22] F.D. Incropera; D.P. Dewitt Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 1996

[23] J.P. Halmann Heat Transfer, McGraw–Hill, 1990

[24] S.J. Kowalski; K. Rajewska; A. Rybicki Stresses generated during convective and microwave drying, Dry. Technol., Volume 23 (2005), pp. 1875-1893

[25] I. Hammouda; D. Mihoubi Modelling of drying induced stress of clay: elastic and viscoelastic behaviours, Mech. Time-Depend. Mater., Volume 18 (2014) no. 1, pp. 97-111

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

2D model simulating the hydro-rheological behavior of leather during convective drying

Naima Benmakhlouf; Soufien Azzouz; Lamine Hassini; ...

C. R. Méca (2021)


Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

Hammouda Othmani; Lamine Hassini; Raja Lamloumi; ...

C. R. Méca (2016)


Changes in the physicomechanical characteristics of a ceramic paste during drying

Imen Hammouda; Kamel Jlassi; Daoued Mihoubi

C. R. Méca (2015)