Generating micrometer sized droplets has been studied in a microfluidic system with T-junction geometry 250 μm in internal diameter and with PTFE capillary tubing. Several experiments were conducted by varying the flow rate of the dispersed phase from
Accepté le :
Publié le :
Yassine Mahdi 1, 2 ; Kamel Daoud 1 ; Lounès Tadrist 2
@article{CRMECA_2017__345_4_259_0, author = {Yassine Mahdi and Kamel Daoud and Loun\`es Tadrist}, title = {Two-phase flow patterns and size distribution of droplets in a microfluidic {T-junction:} {Experimental} observations in the squeezing regime}, journal = {Comptes Rendus. M\'ecanique}, pages = {259--270}, publisher = {Elsevier}, volume = {345}, number = {4}, year = {2017}, doi = {10.1016/j.crme.2017.02.001}, language = {en}, }
TY - JOUR AU - Yassine Mahdi AU - Kamel Daoud AU - Lounès Tadrist TI - Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime JO - Comptes Rendus. Mécanique PY - 2017 SP - 259 EP - 270 VL - 345 IS - 4 PB - Elsevier DO - 10.1016/j.crme.2017.02.001 LA - en ID - CRMECA_2017__345_4_259_0 ER -
%0 Journal Article %A Yassine Mahdi %A Kamel Daoud %A Lounès Tadrist %T Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime %J Comptes Rendus. Mécanique %D 2017 %P 259-270 %V 345 %N 4 %I Elsevier %R 10.1016/j.crme.2017.02.001 %G en %F CRMECA_2017__345_4_259_0
Yassine Mahdi; Kamel Daoud; Lounès Tadrist. Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime. Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 259-270. doi : 10.1016/j.crme.2017.02.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.02.001/
[1] Dynamics of microfluidic droplets, Lab Chip, Volume 10 (2010) no. 16, pp. 2032-2045 | DOI
[2] Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chem. Soc. Rev., Volume 39 (2010), pp. 1153-1182 | DOI
[3] Microfluidics: fluid physics at the nanoliter scale, Rev. Mod. Phys., Volume 77 (2005), pp. 977-1026 | DOI
[4] The origins and the future of microfluidics, Nature, Volume 442 (2006), pp. 368-373 | DOI
[5] An empirical correlation for two-phase frictional performance in small diameter tubes, Int. J. Heat Mass Transf., Volume 45 (2002) no. 17, pp. 3667-3671 | DOI
[6] Droplet formation in a T-shaped microfluidic junction, J. Appl. Phys., Volume 106 (2009) | DOI
[7] Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations, Phys. Rev. E, Volume 85 (2012) | DOI
[8] Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling, Phys. Rev. E, Volume 85 (2012) | DOI
[9] Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties, Lab Chip, Volume 6 (2005) no. 1, pp. 131-136 | DOI
[10] Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett., Volume 86 (2001), pp. 4163-4166 | DOI
[11] Dependence of micro-drop generation performance on dispenser geometry, Exp. Therm. Fluid Sci., Volume 35 (2011) no. 8, pp. 1565-1574 | DOI
[12] Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping, Microfluid. Nanofluid., Volume 5 (2008) no. 6, pp. 711-717 | DOI
[13] Bubble formation and breakup mechanism in a microfluidic flow-focusing device, Chem. Eng. Sci., Volume 64 (2009) no. 10, pp. 2392-2400 | DOI
[14] Formation of droplets and bubbles in a microfluidic T-junction scaling and mechanism of break-up, Lab Chip, Volume 6 (2006) no. 3, pp. 437-446 | DOI
[15] Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Phys. Rev. E, Volume 78 (2008) | DOI
[16] Transition from squeezing to dripping in a microfluidic T-shaped junction, J. Fluid Mech., Volume 595 (2008), pp. 141-161 | DOI
[17] Predictive model for the size of bubbles and droplets created in microfluidic T-junctions, Lab Chip, Volume 10 (2010) no. 19, pp. 2513-2518 | DOI
[18] Effects of type and physical properties of oil phase on oil in water emulsion droplet formation in straight through microchannel emulsification, experimental and CFD studies, Langmuir, Volume 21 (2005) no. 13, pp. 5722-5730 | DOI
[19] Influence of oil type and viscosity on droplet size in a flow focusing microfluidic device, Proc. Chem., Volume 1 (2009) no. 1, pp. 1083-1086 | DOI
[20] The effect of elasticity on drop creation in T-shaped microchannels, J. Non-Newton. Fluid Mech., Volume 137 (2006) no. 1–3, pp. 121-136 | DOI
[21] Protein crystallization using microfluidic technologies based on valves droplets and slip chip, Annu. Rev. Biophys., Volume 39 (2010), pp. 139-158 | DOI
[22] An investigation on the mechanism of droplet formation in a microfluidic T-junction, Microfluid. Nanofluid., Volume 11 (2011), pp. 1-10 | DOI
[23] Two-phase microfluidic flows, Chem. Eng. Sci., Volume 66 (2011) no. 7, pp. 1394-1411 | DOI
[24] Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics, Chem. Eng. Sci., Volume 138 (2015), pp. 128-139 | DOI
[25] Easy microfluidic crystallization device ensuring universal solvent compatibility, Org. Process Res. Dev., Volume 16 (2012) no. 4, pp. 556-560 | DOI
[26] Experimental study of two-phase flow pattern evolution in a horizontal circular tube of small diameter in laminar flow conditions, Int. J. Multiph. Flow, Volume 55 (2013), pp. 99-110 | DOI
[27] Measurement of the liquid film thickness in micro tube slug flow, Int. J. Heat Fluid Flow, Volume 30 (2009) no. 5, pp. 842-853 | DOI
[28] Film thickness measurements in liquid–liquid slug flow regimes, Int. J. Heat Fluid Flow, Volume 44 (2013), pp. 515-523 | DOI
[29] Review and extensions to film thickness and relative bubble drift velocity prediction methods in laminar Taylor or slug flows, Int. J. Multiph. Flow, Volume 55 (2013), pp. 32-42 | DOI
[30]
(2010), p. 16 (Chapter I)- Hydrodynamic characteristics of detachment length and flow mapping in T-junction circular microchannel, Chemical Engineering Communications, Volume 212 (2025) no. 3, p. 368 | DOI:10.1080/00986445.2024.2406022
- Accurate numerical prototypes of microfluidic droplet generators with open source tools, Computers Fluids, Volume 281 (2024), p. 106366 | DOI:10.1016/j.compfluid.2024.106366
- Experimental Investigation of Two-Phase Immiscible Liquid Flow Through a Microchannel, Fluid Mechanics and Fluid Power, Volume 4 (2024), p. 553 | DOI:10.1007/978-981-99-7177-0_46
- Pickering Emulsions Stabilized by Metal-Organic Frameworks, Graphene-Based Materials, and Carbon Nanotubes: A Comprehensive Review, Journal of Molecular Liquids, Volume 393 (2024), p. 123617 | DOI:10.1016/j.molliq.2023.123617
- Microchannel-based Droplet Generation Using Multiphase Flow: A Review, Journal of Physics: Conference Series, Volume 2739 (2024) no. 1, p. 012014 | DOI:10.1088/1742-6596/2739/1/012014
- Exploring the stability of single emulsion created by microfluidics and its use in the production of core–shell microparticles, Microfluidics and Nanofluidics, Volume 28 (2024) no. 5 | DOI:10.1007/s10404-024-02723-1
- Recent Progress of Droplet Microfluidic Emulsification Based Synthesis of Functional Microparticles, Global Challenges, Volume 7 (2023) no. 9 | DOI:10.1002/gch2.202300063
- Numerical Investigation of Droplet Generation Within a Microfluidic T-Junction With Semicylindrical Obstacle, Journal of Fluids Engineering, Volume 145 (2023) no. 1 | DOI:10.1115/1.4055177
- Microfluidics in drug delivery: review of methods and applications, Pharmaceutical Development and Technology, Volume 28 (2023) no. 1, p. 61 | DOI:10.1080/10837450.2022.2162543
- Nonequilibrium interfacial diffusion across microdroplet interface, Lab on a Chip, Volume 22 (2022) no. 19, p. 3770 | DOI:10.1039/d2lc00326k
- Intensified liquid-liquid extraction of biomolecules using ionic liquids in small channels, Separation and Purification Technology, Volume 282 (2022), p. 120063 | DOI:10.1016/j.seppur.2021.120063
- A Review on the Hydrodynamics of the Liquid–Liquid Two-Phase Flow in the Microchannels, Industrial Engineering Chemistry Research, Volume 60 (2021) no. 14, p. 5049 | DOI:10.1021/acs.iecr.0c05858
- Droplet Formation in a Microchannel T-Junction With Different Step Structure Position, Journal of Energy Resources Technology, Volume 143 (2021) no. 7 | DOI:10.1115/1.4048186
- A 3D tubular structure with droplet generation and temperature control for DNA amplification, Microfluidics and Nanofluidics, Volume 25 (2021) no. 7 | DOI:10.1007/s10404-021-02454-7
- Precise control for the size of droplet in T-junction microfluidic based on iterative learning method, Journal of the Franklin Institute, Volume 357 (2020) no. 9, p. 5302 | DOI:10.1016/j.jfranklin.2020.02.046
- Comparison of Two Gas Injection Methods for Generating Bubbles in a T-junction, Microgravity Science and Technology, Volume 32 (2020) no. 4, p. 703 | DOI:10.1007/s12217-020-09790-3
- Flow patterns of solid in water in oil (S/W/O) compound droplets formation in a microfluidic device with perpendicular shear, Journal of Industrial and Engineering Chemistry, Volume 75 (2019), p. 171 | DOI:10.1016/j.jiec.2019.03.020
- A comprehensive review on liquid–liquid two-phase flow in microchannel: flow pattern and mass transfer, Microfluidics and Nanofluidics, Volume 23 (2019) no. 10 | DOI:10.1007/s10404-019-2280-4
- Equal split of gas–liquid two-phase flow at variable extraction ratio, Chemical Engineering Research and Design, Volume 136 (2018), p. 165 | DOI:10.1016/j.cherd.2018.05.018
- 3D-printed air-blast microfluidic nozzles for preparing calcium alginate microparticles, RSC Adv., Volume 7 (2017) no. 77, p. 48826 | DOI:10.1039/c7ra08611c
Cité par 20 documents. Sources : Crossref
Commentaires - Politique