Comptes Rendus
Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime
Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 259-270.

Generating micrometer sized droplets has been studied in a microfluidic system with T-junction geometry 250 μm in internal diameter and with PTFE capillary tubing. Several experiments were conducted by varying the flow rate of the dispersed phase from 2.781011 m3/s to 5.28109 m3/s and that of the continuous phase from 2.781010 m3/s to 1.94109 m3/s. The visualization of different flow regimes (drop, plug, and annular) was carried out for three configurations (not inverted in a horizontal position, inverted in a horizontal position, and inverted in a vertical position) for low capillary numbers. The model of Gauss was also chosen for a droplet size distribution in the dispersed phase, with the flow quality x varying from 0.016 to 0.44. The evolution of the drop size distribution as a function of the flow quality in the dispersed phase shows that the variation coefficient of the droplet's diameter is inversely proportional to the flow quality.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.02.001
Mots-clés : Microfluidics, Two-phase flow patterns, T-junction, Coefficient of variation, Size distribution

Yassine Mahdi 1, 2 ; Kamel Daoud 1 ; Lounès Tadrist 2

1 University of Sciences and Technology Houari Boumediene, Faculty of Mechanical Engineering and Process Engineering, Laboratory of transfer phenomena, BP 32 Bab Ezzouar, 16111 Algiers, Algeria
2 Aix-Marseille Université, Laboratoire IUSTI, CNRS UMR 7343, 13453 Marseille cedex 13, France
@article{CRMECA_2017__345_4_259_0,
     author = {Yassine Mahdi and Kamel Daoud and Loun\`es Tadrist},
     title = {Two-phase flow patterns and size distribution of droplets in a microfluidic {T-junction:} {Experimental} observations in the squeezing regime},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {259--270},
     publisher = {Elsevier},
     volume = {345},
     number = {4},
     year = {2017},
     doi = {10.1016/j.crme.2017.02.001},
     language = {en},
}
TY  - JOUR
AU  - Yassine Mahdi
AU  - Kamel Daoud
AU  - Lounès Tadrist
TI  - Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 259
EP  - 270
VL  - 345
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2017.02.001
LA  - en
ID  - CRMECA_2017__345_4_259_0
ER  - 
%0 Journal Article
%A Yassine Mahdi
%A Kamel Daoud
%A Lounès Tadrist
%T Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime
%J Comptes Rendus. Mécanique
%D 2017
%P 259-270
%V 345
%N 4
%I Elsevier
%R 10.1016/j.crme.2017.02.001
%G en
%F CRMECA_2017__345_4_259_0
Yassine Mahdi; Kamel Daoud; Lounès Tadrist. Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime. Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 259-270. doi : 10.1016/j.crme.2017.02.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.02.001/

[1] C.N. Baroud; F. Gallaire; R. Dangla Dynamics of microfluidic droplets, Lab Chip, Volume 10 (2010) no. 16, pp. 2032-2045 | DOI

[2] D. Mark; S. Haeberle; G. Roth; F. von Stetten; R. Zengerle Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chem. Soc. Rev., Volume 39 (2010), pp. 1153-1182 | DOI

[3] T.M. Squires; S.R. Quake Microfluidics: fluid physics at the nanoliter scale, Rev. Mod. Phys., Volume 77 (2005), pp. 977-1026 | DOI

[4] G.M. Whitesides The origins and the future of microfluidics, Nature, Volume 442 (2006), pp. 368-373 | DOI

[5] I.Y. Chen; K.S. Yang; C.C. Wang An empirical correlation for two-phase frictional performance in small diameter tubes, Int. J. Heat Mass Transf., Volume 45 (2002) no. 17, pp. 3667-3671 | DOI

[6] H. Liu; Y. Zhang Droplet formation in a T-shaped microfluidic junction, J. Appl. Phys., Volume 106 (2009) | DOI

[7] T. Glawdel; C. Elbuken; C.L. Ren Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations, Phys. Rev. E, Volume 85 (2012) | DOI

[8] T. Glawdel; C. Elbuken; C.L. Ren Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling, Phys. Rev. E, Volume 85 (2012) | DOI

[9] J.H. Xu; G.S. Luo; S.W. Li; G.G. Chen Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties, Lab Chip, Volume 6 (2005) no. 1, pp. 131-136 | DOI

[10] T. Thorsen; R. Roberts; F.H. Arnold; S.R. Quake Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett., Volume 86 (2001), pp. 4163-4166 | DOI

[11] S. Yeom; S.Y. Lee Dependence of micro-drop generation performance on dispenser geometry, Exp. Therm. Fluid Sci., Volume 35 (2011) no. 8, pp. 1565-1574 | DOI

[12] J.H. Xu; S.W. Li; J. Tan; G.S. Luo Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping, Microfluid. Nanofluid., Volume 5 (2008) no. 6, pp. 711-717 | DOI

[13] T. Fu; Y. Ma; D. Funfschilling; H.Z. Li Bubble formation and breakup mechanism in a microfluidic flow-focusing device, Chem. Eng. Sci., Volume 64 (2009) no. 10, pp. 2392-2400 | DOI

[14] P. Garstecki; M.J. Fuerstman; H.A. Stonec; G.M. Whitesides Formation of droplets and bubbles in a microfluidic T-junction scaling and mechanism of break-up, Lab Chip, Volume 6 (2006) no. 3, pp. 437-446 | DOI

[15] G.F. Christopher; N.N. Noharuddin; J.A. Taylor; S.L. Anna Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Phys. Rev. E, Volume 78 (2008) | DOI

[16] M.D. Menech; P. Garstecki; F. Jousse; H.A. Stone Transition from squeezing to dripping in a microfluidic T-shaped junction, J. Fluid Mech., Volume 595 (2008), pp. 141-161 | DOI

[17] V. Van Steijn; C.R. Kleijn; M.T. Kreutzer Predictive model for the size of bubbles and droplets created in microfluidic T-junctions, Lab Chip, Volume 10 (2010) no. 19, pp. 2513-2518 | DOI

[18] I. Kobayashi; S. Mukataka; M. Nakajima Effects of type and physical properties of oil phase on oil in water emulsion droplet formation in straight through microchannel emulsification, experimental and CFD studies, Langmuir, Volume 21 (2005) no. 13, pp. 5722-5730 | DOI

[19] J. Wacker; V.K. Parashar; M.A.M. Gijs Influence of oil type and viscosity on droplet size in a flow focusing microfluidic device, Proc. Chem., Volume 1 (2009) no. 1, pp. 1083-1086 | DOI

[20] H. Joeska; J.J. Cooper-White The effect of elasticity on drop creation in T-shaped microchannels, J. Non-Newton. Fluid Mech., Volume 137 (2006) no. 1–3, pp. 121-136 | DOI

[21] L. Li; R.F. Ismagilov Protein crystallization using microfluidic technologies based on valves droplets and slip chip, Annu. Rev. Biophys., Volume 39 (2010), pp. 139-158 | DOI

[22] J. Sivasamy; T.N. Wong; N.T. Nguyen; L.T.H. Kao An investigation on the mechanism of droplet formation in a microfluidic T-junction, Microfluid. Nanofluid., Volume 11 (2011), pp. 1-10 | DOI

[23] C.-X. Zhao; A.P.J. Middelberg Two-phase microfluidic flows, Chem. Eng. Sci., Volume 66 (2011) no. 7, pp. 1394-1411 | DOI

[24] S. Zhang; C. Guivier-Curien; S. Veesler; N. Candoni Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics, Chem. Eng. Sci., Volume 138 (2015), pp. 128-139 | DOI

[25] M. Ildefonso; N. Candoni; S. Veesler; A. Cheap Easy microfluidic crystallization device ensuring universal solvent compatibility, Org. Process Res. Dev., Volume 16 (2012) no. 4, pp. 556-560 | DOI

[26] S. Zeguai; S. Chikh; L. Tadrist Experimental study of two-phase flow pattern evolution in a horizontal circular tube of small diameter in laminar flow conditions, Int. J. Multiph. Flow, Volume 55 (2013), pp. 99-110 | DOI

[27] Y. Han; N. Shikazono Measurement of the liquid film thickness in micro tube slug flow, Int. J. Heat Fluid Flow, Volume 30 (2009) no. 5, pp. 842-853 | DOI

[28] M. Mac Giolla Eain; V. Egan; J. Punch Film thickness measurements in liquid–liquid slug flow regimes, Int. J. Heat Fluid Flow, Volume 44 (2013), pp. 515-523 | DOI

[29] J.A. Howard; P.A. Walsh Review and extensions to film thickness and relative bubble drift velocity prediction methods in laminar Taylor or slug flows, Int. J. Multiph. Flow, Volume 55 (2013), pp. 32-42 | DOI

[30] S. Bolton; C. Bon (2010), p. 16 (Chapter I)

  • Mehrdad Mahmoudi; Saeed Ghasemzade Bariki; Salman Movahedirad; Ahmad Rahbar Kelishami Hydrodynamic characteristics of detachment length and flow mapping in T-junction circular microchannel, Chemical Engineering Communications, Volume 212 (2025) no. 3, p. 368 | DOI:10.1080/00986445.2024.2406022
  • David Gabriel Harispe; Pablo A. Kler Accurate numerical prototypes of microfluidic droplet generators with open source tools, Computers Fluids, Volume 281 (2024), p. 106366 | DOI:10.1016/j.compfluid.2024.106366
  • Rohit Kumar; Chandan Nashine; Arman Mohaddin Nadaf; Harish Kumar Tomar; Manmohan Pandey Experimental Investigation of Two-Phase Immiscible Liquid Flow Through a Microchannel, Fluid Mechanics and Fluid Power, Volume 4 (2024), p. 553 | DOI:10.1007/978-981-99-7177-0_46
  • Nansee S.K. Abu Zaid; Mustafa.S. Nasser; Sagheer A Onaizi Pickering Emulsions Stabilized by Metal-Organic Frameworks, Graphene-Based Materials, and Carbon Nanotubes: A Comprehensive Review, Journal of Molecular Liquids, Volume 393 (2024), p. 123617 | DOI:10.1016/j.molliq.2023.123617
  • K Raynaldo; Y Whulanza; R Irwansyah Microchannel-based Droplet Generation Using Multiphase Flow: A Review, Journal of Physics: Conference Series, Volume 2739 (2024) no. 1, p. 012014 | DOI:10.1088/1742-6596/2739/1/012014
  • Mehrnaz Oveysi; Vahid Bazargan; Amir Nejat; Marco Marengo Exploring the stability of single emulsion created by microfluidics and its use in the production of core–shell microparticles, Microfluidics and Nanofluidics, Volume 28 (2024) no. 5 | DOI:10.1007/s10404-024-02723-1
  • Fei Long; Yanhong Guo; Zhiyu Zhang; Jing Wang; Yong Ren; Yuchuan Cheng; Gaojie Xu Recent Progress of Droplet Microfluidic Emulsification Based Synthesis of Functional Microparticles, Global Challenges, Volume 7 (2023) no. 9 | DOI:10.1002/gch2.202300063
  • Ashim Jyoti Nath; Dhrijit Kumar Deka; Sukumar Pati Numerical Investigation of Droplet Generation Within a Microfluidic T-Junction With Semicylindrical Obstacle, Journal of Fluids Engineering, Volume 145 (2023) no. 1 | DOI:10.1115/1.4055177
  • Mutasem Rawas-Qalaji; Roberta Cagliani; Noor Al-hashimi; Rahma Al-Dabbagh; Amena Al-Dabbagh; Zahid Hussain Microfluidics in drug delivery: review of methods and applications, Pharmaceutical Development and Technology, Volume 28 (2023) no. 1, p. 61 | DOI:10.1080/10837450.2022.2162543
  • Davood Khoeini; Vincent He; Ben J. Boyd; Adrian Neild; Timothy F. Scott Nonequilibrium interfacial diffusion across microdroplet interface, Lab on a Chip, Volume 22 (2022) no. 19, p. 3770 | DOI:10.1039/d2lc00326k
  • Yiota-Victoria Phakoukaki; Paul O'Shaughnessy; Panagiota Angeli Intensified liquid-liquid extraction of biomolecules using ionic liquids in small channels, Separation and Purification Technology, Volume 282 (2022), p. 120063 | DOI:10.1016/j.seppur.2021.120063
  • Marwah Al-Azzawi; Farouq S. Mjalli; Afzal Husain; Muthanna Al-Dahhan A Review on the Hydrodynamics of the Liquid–Liquid Two-Phase Flow in the Microchannels, Industrial Engineering Chemistry Research, Volume 60 (2021) no. 14, p. 5049 | DOI:10.1021/acs.iecr.0c05858
  • Mohammad Yaghoub Abdollahzadeh Jamalabadi; Rasoul Kazemi; Mohammad Ghalandari Droplet Formation in a Microchannel T-Junction With Different Step Structure Position, Journal of Energy Resources Technology, Volume 143 (2021) no. 7 | DOI:10.1115/1.4048186
  • Shaw-Hwa Parng; Ping-Jung Wu; Yu-Yin Tsai; Ruey-Shyan Hong; Su-Jan Lee A 3D tubular structure with droplet generation and temperature control for DNA amplification, Microfluidics and Nanofluidics, Volume 25 (2021) no. 7 | DOI:10.1007/s10404-021-02454-7
  • Deqing Huang; Kang Wang; Yaolei Wang; Hejia Sun; Xingyuan Liang; Tao Meng Precise control for the size of droplet in T-junction microfluidic based on iterative learning method, Journal of the Franklin Institute, Volume 357 (2020) no. 9, p. 5302 | DOI:10.1016/j.jfranklin.2020.02.046
  • S. Arias Comparison of Two Gas Injection Methods for Generating Bubbles in a T-junction, Microgravity Science and Technology, Volume 32 (2020) no. 4, p. 703 | DOI:10.1007/s12217-020-09790-3
  • Dawei Pan; Qiang Chen; Lan Xu; Can Yang; Meifang Liu; Weixing Huang; Bo Li Flow patterns of solid in water in oil (S/W/O) compound droplets formation in a microfluidic device with perpendicular shear, Journal of Industrial and Engineering Chemistry, Volume 75 (2019), p. 171 | DOI:10.1016/j.jiec.2019.03.020
  • Jin-yuan Qian; Xiao-juan Li; Zan Wu; Zhi-jiang Jin; Bengt Sunden A comprehensive review on liquid–liquid two-phase flow in microchannel: flow pattern and mass transfer, Microfluidics and Nanofluidics, Volume 23 (2019) no. 10 | DOI:10.1007/s10404-019-2280-4
  • Fachun Liang; Shitao Sun; Jifeng Gao; Luyuan Han; Guobin Shang Equal split of gas–liquid two-phase flow at variable extraction ratio, Chemical Engineering Research and Design, Volume 136 (2018), p. 165 | DOI:10.1016/j.cherd.2018.05.018
  • Biao Ye; Hong Xu; Binbin Bao; Jin Xuan; Li Zhang 3D-printed air-blast microfluidic nozzles for preparing calcium alginate microparticles, RSC Adv., Volume 7 (2017) no. 77, p. 48826 | DOI:10.1039/c7ra08611c

Cité par 20 documents. Sources : Crossref

Commentaires - Politique