Comptes Rendus
Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime
Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 259-270.

Generating micrometer sized droplets has been studied in a microfluidic system with T-junction geometry 250 μm in internal diameter and with PTFE capillary tubing. Several experiments were conducted by varying the flow rate of the dispersed phase from 2.781011 m3/s to 5.28109 m3/s and that of the continuous phase from 2.781010 m3/s to 1.94109 m3/s. The visualization of different flow regimes (drop, plug, and annular) was carried out for three configurations (not inverted in a horizontal position, inverted in a horizontal position, and inverted in a vertical position) for low capillary numbers. The model of Gauss was also chosen for a droplet size distribution in the dispersed phase, with the flow quality x varying from 0.016 to 0.44. The evolution of the drop size distribution as a function of the flow quality in the dispersed phase shows that the variation coefficient of the droplet's diameter is inversely proportional to the flow quality.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.02.001
Keywords: Microfluidics, Two-phase flow patterns, T-junction, Coefficient of variation, Size distribution

Yassine Mahdi 1, 2; Kamel Daoud 1; Lounès Tadrist 2

1 University of Sciences and Technology Houari Boumediene, Faculty of Mechanical Engineering and Process Engineering, Laboratory of transfer phenomena, BP 32 Bab Ezzouar, 16111 Algiers, Algeria
2 Aix-Marseille Université, Laboratoire IUSTI, CNRS UMR 7343, 13453 Marseille cedex 13, France
@article{CRMECA_2017__345_4_259_0,
     author = {Yassine Mahdi and Kamel Daoud and Loun\`es Tadrist},
     title = {Two-phase flow patterns and size distribution of droplets in a microfluidic {T-junction:} {Experimental} observations in the squeezing regime},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {259--270},
     publisher = {Elsevier},
     volume = {345},
     number = {4},
     year = {2017},
     doi = {10.1016/j.crme.2017.02.001},
     language = {en},
}
TY  - JOUR
AU  - Yassine Mahdi
AU  - Kamel Daoud
AU  - Lounès Tadrist
TI  - Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 259
EP  - 270
VL  - 345
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2017.02.001
LA  - en
ID  - CRMECA_2017__345_4_259_0
ER  - 
%0 Journal Article
%A Yassine Mahdi
%A Kamel Daoud
%A Lounès Tadrist
%T Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime
%J Comptes Rendus. Mécanique
%D 2017
%P 259-270
%V 345
%N 4
%I Elsevier
%R 10.1016/j.crme.2017.02.001
%G en
%F CRMECA_2017__345_4_259_0
Yassine Mahdi; Kamel Daoud; Lounès Tadrist. Two-phase flow patterns and size distribution of droplets in a microfluidic T-junction: Experimental observations in the squeezing regime. Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 259-270. doi : 10.1016/j.crme.2017.02.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.02.001/

[1] C.N. Baroud; F. Gallaire; R. Dangla Dynamics of microfluidic droplets, Lab Chip, Volume 10 (2010) no. 16, pp. 2032-2045 | DOI

[2] D. Mark; S. Haeberle; G. Roth; F. von Stetten; R. Zengerle Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications, Chem. Soc. Rev., Volume 39 (2010), pp. 1153-1182 | DOI

[3] T.M. Squires; S.R. Quake Microfluidics: fluid physics at the nanoliter scale, Rev. Mod. Phys., Volume 77 (2005), pp. 977-1026 | DOI

[4] G.M. Whitesides The origins and the future of microfluidics, Nature, Volume 442 (2006), pp. 368-373 | DOI

[5] I.Y. Chen; K.S. Yang; C.C. Wang An empirical correlation for two-phase frictional performance in small diameter tubes, Int. J. Heat Mass Transf., Volume 45 (2002) no. 17, pp. 3667-3671 | DOI

[6] H. Liu; Y. Zhang Droplet formation in a T-shaped microfluidic junction, J. Appl. Phys., Volume 106 (2009) | DOI

[7] T. Glawdel; C. Elbuken; C.L. Ren Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations, Phys. Rev. E, Volume 85 (2012) | DOI

[8] T. Glawdel; C. Elbuken; C.L. Ren Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling, Phys. Rev. E, Volume 85 (2012) | DOI

[9] J.H. Xu; G.S. Luo; S.W. Li; G.G. Chen Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties, Lab Chip, Volume 6 (2005) no. 1, pp. 131-136 | DOI

[10] T. Thorsen; R. Roberts; F.H. Arnold; S.R. Quake Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett., Volume 86 (2001), pp. 4163-4166 | DOI

[11] S. Yeom; S.Y. Lee Dependence of micro-drop generation performance on dispenser geometry, Exp. Therm. Fluid Sci., Volume 35 (2011) no. 8, pp. 1565-1574 | DOI

[12] J.H. Xu; S.W. Li; J. Tan; G.S. Luo Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping, Microfluid. Nanofluid., Volume 5 (2008) no. 6, pp. 711-717 | DOI

[13] T. Fu; Y. Ma; D. Funfschilling; H.Z. Li Bubble formation and breakup mechanism in a microfluidic flow-focusing device, Chem. Eng. Sci., Volume 64 (2009) no. 10, pp. 2392-2400 | DOI

[14] P. Garstecki; M.J. Fuerstman; H.A. Stonec; G.M. Whitesides Formation of droplets and bubbles in a microfluidic T-junction scaling and mechanism of break-up, Lab Chip, Volume 6 (2006) no. 3, pp. 437-446 | DOI

[15] G.F. Christopher; N.N. Noharuddin; J.A. Taylor; S.L. Anna Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions, Phys. Rev. E, Volume 78 (2008) | DOI

[16] M.D. Menech; P. Garstecki; F. Jousse; H.A. Stone Transition from squeezing to dripping in a microfluidic T-shaped junction, J. Fluid Mech., Volume 595 (2008), pp. 141-161 | DOI

[17] V. Van Steijn; C.R. Kleijn; M.T. Kreutzer Predictive model for the size of bubbles and droplets created in microfluidic T-junctions, Lab Chip, Volume 10 (2010) no. 19, pp. 2513-2518 | DOI

[18] I. Kobayashi; S. Mukataka; M. Nakajima Effects of type and physical properties of oil phase on oil in water emulsion droplet formation in straight through microchannel emulsification, experimental and CFD studies, Langmuir, Volume 21 (2005) no. 13, pp. 5722-5730 | DOI

[19] J. Wacker; V.K. Parashar; M.A.M. Gijs Influence of oil type and viscosity on droplet size in a flow focusing microfluidic device, Proc. Chem., Volume 1 (2009) no. 1, pp. 1083-1086 | DOI

[20] H. Joeska; J.J. Cooper-White The effect of elasticity on drop creation in T-shaped microchannels, J. Non-Newton. Fluid Mech., Volume 137 (2006) no. 1–3, pp. 121-136 | DOI

[21] L. Li; R.F. Ismagilov Protein crystallization using microfluidic technologies based on valves droplets and slip chip, Annu. Rev. Biophys., Volume 39 (2010), pp. 139-158 | DOI

[22] J. Sivasamy; T.N. Wong; N.T. Nguyen; L.T.H. Kao An investigation on the mechanism of droplet formation in a microfluidic T-junction, Microfluid. Nanofluid., Volume 11 (2011), pp. 1-10 | DOI

[23] C.-X. Zhao; A.P.J. Middelberg Two-phase microfluidic flows, Chem. Eng. Sci., Volume 66 (2011) no. 7, pp. 1394-1411 | DOI

[24] S. Zhang; C. Guivier-Curien; S. Veesler; N. Candoni Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics, Chem. Eng. Sci., Volume 138 (2015), pp. 128-139 | DOI

[25] M. Ildefonso; N. Candoni; S. Veesler; A. Cheap Easy microfluidic crystallization device ensuring universal solvent compatibility, Org. Process Res. Dev., Volume 16 (2012) no. 4, pp. 556-560 | DOI

[26] S. Zeguai; S. Chikh; L. Tadrist Experimental study of two-phase flow pattern evolution in a horizontal circular tube of small diameter in laminar flow conditions, Int. J. Multiph. Flow, Volume 55 (2013), pp. 99-110 | DOI

[27] Y. Han; N. Shikazono Measurement of the liquid film thickness in micro tube slug flow, Int. J. Heat Fluid Flow, Volume 30 (2009) no. 5, pp. 842-853 | DOI

[28] M. Mac Giolla Eain; V. Egan; J. Punch Film thickness measurements in liquid–liquid slug flow regimes, Int. J. Heat Fluid Flow, Volume 44 (2013), pp. 515-523 | DOI

[29] J.A. Howard; P.A. Walsh Review and extensions to film thickness and relative bubble drift velocity prediction methods in laminar Taylor or slug flows, Int. J. Multiph. Flow, Volume 55 (2013), pp. 32-42 | DOI

[30] S. Bolton; C. Bon (2010), p. 16 (Chapter I)

Cited by Sources:

Comments - Policy