Comptes Rendus
Fatigue crack growth simulation in coated materials using X-FEM
Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 271-280.

In the present work, the eXtended Finite Element Method (XFEM) is used to study the effect of bi-material interfaces on fatigue life in galvanised panels. X-FEM and Paris law are implemented in ABAQUS software using Python code. The XFEM method proved to be an adequate method for stress intensity factor computation, and, furthermore, no remeshing is required for crack growth simulations. A study of fatigue crack growth is conducted for several substrate materials, and the influence of the initial crack angle is ascertained. This study also compares the crack growth rate between three types of bi-materials alloys zinc/steel, zinc/aluminium, and zinc/zinc. The interaction between two cracks and fatigue life, in the presence of bi-material interface, is investigated as well.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.02.005
Keywords: Fatigue life, Crack growth rate, XFEM, Bi-material, Propagation, Two cracks

Khalid Nasri 1; Mohammed Zenasni 1

1 Équipe de mécanique et calcul scientifique, ENSA, Université Mohamed-1
@article{CRMECA_2017__345_4_271_0,
     author = {Khalid Nasri and Mohammed Zenasni},
     title = {Fatigue crack growth simulation in coated materials using {X-FEM}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {271--280},
     publisher = {Elsevier},
     volume = {345},
     number = {4},
     year = {2017},
     doi = {10.1016/j.crme.2017.02.005},
     language = {en},
}
TY  - JOUR
AU  - Khalid Nasri
AU  - Mohammed Zenasni
TI  - Fatigue crack growth simulation in coated materials using X-FEM
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 271
EP  - 280
VL  - 345
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crme.2017.02.005
LA  - en
ID  - CRMECA_2017__345_4_271_0
ER  - 
%0 Journal Article
%A Khalid Nasri
%A Mohammed Zenasni
%T Fatigue crack growth simulation in coated materials using X-FEM
%J Comptes Rendus. Mécanique
%D 2017
%P 271-280
%V 345
%N 4
%I Elsevier
%R 10.1016/j.crme.2017.02.005
%G en
%F CRMECA_2017__345_4_271_0
Khalid Nasri; Mohammed Zenasni. Fatigue crack growth simulation in coated materials using X-FEM. Comptes Rendus. Mécanique, Volume 345 (2017) no. 4, pp. 271-280. doi : 10.1016/j.crme.2017.02.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.02.005/

[1] A. Chamat; b.S. Aden-Ali; J. Gilgert; E. Petit; K. Nasri; M. Abbadi; Z. Azari Crack behaviour in zinc coating and at the interface zinc-hot galvanised TRIP steel 800, Eng. Fract. Mech., Volume 114 (2013), pp. 12-25

[2] K. Nasri; M. Abbadi; M. Zenasni; Z. Azari Numerical and experimental study of crack behaviour at the zinc/TRIP steel 800 interface, Comput. Mater. Sci., Volume 82 (2014), pp. 172-177

[3] P.C. Paris; F.A. Erdogan A critical analysis of crack propagation laws, J. Basic Eng., Volume 85 (1963), pp. 528-533

[4] E.K. Walker The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7076-T6 aluminium, Effect of Environment and Complex Load History on Fatigue Life, ASTM STR, vol. 462, American Society for Testing and Materials, Philadelphia, PA, USA, 1970, pp. 1-4

[5] W. Elber The significance of fatigue crack closure, ASTM STR, vol. 486, 1971, pp. 230-242

[6] S. Kumar; I.V. Singh; B.K. Mishra A homogenized XFEM approach to simulate fatigue crack growth problems, Comput. Struct., Volume 150 (2015), pp. 1-22

[7] K.S. Chan A microstructure-based fatigue-crack-initiation model, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 34 (2003) no. 1, pp. 43-58

[8] E. Giner; C. Navarro; M. Sabsabi; M. Tur; J. Domínguez; F.J. Fuenmayor Fretting fatigue life prediction using the extended finite element method, Int. J. Mech. Sci., Volume 53 (2011) no. 3, pp. 217-225

[9] P. Himanshu; S. Akhilendra; I.V. Singh Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method, Appl. Math. Model., Volume 38 (2014), pp. 3093-3123

[10] S. Bhattacharya; I.V. Singh; B.K. Mishra Fatigue life simulation of functionally graded materials under cyclic thermal load using XFEM, Int. J. Mech. Sci., Volume 82 (2017), pp. 41-59

[11] B.K. Hachi; S. Rechak; M. Haboussi; M. Taghite; G. Maurice C. R. Mecanique, 336 (2008) no. 4, pp. 390-397

[12] R.O. Ritchie Mechanisms of fatigue-crack propagation in ductile and brittle solids, Int. J. Fract., Volume 100 (1999), pp. 55-83

[13] M. Maziere; B. Fedelich Simulation of fatigue crack growth by crack tip plastic blunting using cohesive zone elements, Proc. Eng., Volume 2 (2010) no. 1, pp. 2055-2064

[14] Z. Shi; R. Zhang Numerical simulation of interfacial crack growth under fatigue load, Fatigue Fract. Eng. Mater. Struct., Volume 32 (2009), pp. 26-32

[15] L.N. Gifford; P.D. Hilton Stress intensity factors by enriched finite elements, Eng. Fract. Mech., Volume 10 (1978), pp. 485-496

[16] S.T. Raveendra; P.K. Banerjee Boundary element analysis of cracks in thermally stresses planar structures, Int. J. Solids Struct., Volume 29 (1992), pp. 2301-2317

[17] N. Moës; J. Dolbow; T. Belytschko A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., Volume 46 (1999), pp. 131-150

[18] M.R. Shirazizadeh; H. Shahverdi An extended finite element model for structural analysis of cracked beam-columns with arbitrary cross-section, Int. J. Mech. Sci., Volume 99 (2015) no. 99, pp. 1-9

[19] T. Belytschko; T. Black Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng., Volume 45 (1999), pp. 601-620

[20] S. Osher; J.A. Sethian Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., Volume 79 (1988), pp. 12-49

[21] M. Stolarska; D.L. Chopp; N. Moes; T. Belytschko Modeling crack growth by level sets in the extended finite element method, Int. J. Numer. Methods Eng., Volume 51 (2001), pp. 943-960

[22] N. Sukumar; D.L. Chopp; N. Moes; T. Belytschko Modeling of holes and inclusions by level sets in the extended finite element method, Comput. Methods Appl. Mech. Eng., Volume 190 (2001), pp. 6183-6200

[23] K. Nasri; M. Abbadi; M. Zenasni; M. Ghammouri; Z. Azari Double crack growth analysis in the presence of a bi-material interface using XFEM and FEM modelling, Eng. Fract. Mech., Volume 132 (2014), pp. 189-199

[24] L. Bouhala; Q. Shao; Y. Koutsawa; A. Younes; P. Nunez; A. Makradi et al. An XFEM crack-tip enrichment for a crack terminating at a bi-material interface, Eng. Fract. Mech., Volume 102 (2013), pp. 51-64

[25] H. Pathak; A. Singh; I.V. Singh Fatigue crack growth simulations of bi-material interfacial cracks under thermo-elastic loading by extended finite element method, Eur. J. Comput. Mech., Volume 22 (2013), pp. 79-104

[26] R. Moslemian; A.M. Karlsson; C. Berggreen Accelerated fatigue crack growth simulation in a bi-material interface, Int. J. Fatigue, Volume 33 (2011), pp. 1526-1532

[27] M.T. Milan; P. Bowen Experimental and predicted fatigue crack growth resistance in Al2124/Al2124+35% SiC (3 μm) bi-material, Int. J. Fatigue, Volume 25 (2003), pp. 649-659

[28] F. Jiang; Z.L. Deng; K. Zhao; J. Sun Fatigue crack propagation normal to a plasticity mismatched bi-material interface, Mater. Sci. Eng. A, Volume 356 (2003), pp. 258-266

[29] E. Ginera; N. Sukumar; J.E. Tarancóna; F.J. Fuenmayora An ABAQUS implementation of the extended finite element method, Eng. Fract. Mech., Volume 76 (2009) no. 3, pp. 347-368

[30] ABAQUS/Standard, Documentation for version 6.12. Dassault System Simulia.

[31] S.P. Bordas; P.V. Nguyen; C. Dunant; A. Guidoum; H.N. Dang An extended finite element library, Int. J. Numer. Methods Eng., Volume 71 (2007), pp. 703-732

[32] N. Sukumar; D.L. Chopp; N. Moes; T. Belytschko Modeling of holes and inclusions by level sets in the extended finite element method, Comput. Methods Appl. Mech. Eng., Volume 190 (2001), pp. 6183-6200

[33] N. Moes; J. Dolbow; T. Belytschko A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., Volume 46 (1999), pp. 131-150

[34] P. Himanshu; S. Akhilendra; V.S. Indra Numerical simulation of bi-material interfacial cracks using EFGM and XFEM, Int. J. Mech. Mater. Des., Volume 8 (2012), pp. 9-36

[35] L. Bouhala; S. Belouettar; A. Makradi; Y. Remond Study of interface influence on crack growth: application to solid oxide fuel cell like materials design, Mater. Des., Volume 31 (2010), pp. 1033-1041

[36] C. Shih; R. Asaro Elastic–plastic analysis of cracks on bimaterial interfaces: part I – small scale yielding, J. Appl. Mech., Volume 55 (1988), pp. 299-316

[37] P. Paris; M. Gomez; W. Anderson A rational analytic theory of fatigue, Trend Eng., Volume 13 (1961), pp. 9-14

[38] K. Tanaka Fatigue crack propagation from a crack inclined to the cyclic tension axis, Eng. Fract. Mech., Volume 6 (1974), pp. 493-507

[39] Y. Murakami Stress Intensity, Factors Handbook Press, Oxford, UK, 1987

[40] H. Tada; P.C. Paris; G.R. Irwin Stress Analysis of Cracks Handbook, American Society of Mechanical Engineers, 2001

Cited by Sources:

Comments - Policy