Comptes Rendus
A high-order corrector estimate for a semi-linear elliptic system in perforated domains
Comptes Rendus. Mécanique, Volume 345 (2017) no. 5, pp. 337-343.

We derive in this Note a high-order corrector estimate for the homogenization of a microscopic semi-linear elliptic system posed in perforated domains. The major challenges are the presence of nonlinear volume and surface reaction rates. This type of correctors justifies mathematically the convergence rate of formal asymptotic expansions for the two-scale homogenization settings. As the main tool, we use energy-like estimates to investigate the error estimate between the micro and macro concentrations and between the corresponding micro- and macro-concentration gradients. This work aims at generalizing the results reported in [1,2].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.03.003
Mots clés : Corrector estimate, Homogenization, Elliptic systems, Perforated domains

Vo Anh Khoa 1

1 Mathematics and Computer Science Division, Gran Sasso Science Institute, L'Aquila, Italy
@article{CRMECA_2017__345_5_337_0,
     author = {Vo Anh Khoa},
     title = {A high-order corrector estimate for a semi-linear elliptic system in perforated domains},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {337--343},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2017},
     doi = {10.1016/j.crme.2017.03.003},
     language = {en},
}
TY  - JOUR
AU  - Vo Anh Khoa
TI  - A high-order corrector estimate for a semi-linear elliptic system in perforated domains
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 337
EP  - 343
VL  - 345
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2017.03.003
LA  - en
ID  - CRMECA_2017__345_5_337_0
ER  - 
%0 Journal Article
%A Vo Anh Khoa
%T A high-order corrector estimate for a semi-linear elliptic system in perforated domains
%J Comptes Rendus. Mécanique
%D 2017
%P 337-343
%V 345
%N 5
%I Elsevier
%R 10.1016/j.crme.2017.03.003
%G en
%F CRMECA_2017__345_5_337_0
Vo Anh Khoa. A high-order corrector estimate for a semi-linear elliptic system in perforated domains. Comptes Rendus. Mécanique, Volume 345 (2017) no. 5, pp. 337-343. doi : 10.1016/j.crme.2017.03.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.03.003/

[1] D. Ciorǎnescu; J. Saint; J. Paulin Homogenization of Reticulated Structures, Springer, 1999

[2] V.A. Khoa; A. Muntean Asymptotic analysis of a semi-linear elliptic system in perforated domains: well-posedness and corrector for the homogenization limit, J. Math. Anal. Appl., Volume 439 (2016), pp. 271-295

[3] C. Le Bris; F. Legoll; A. Lozinski An MsFEM type approach for perforated domains, Multiscale Model. Simul., Volume 12 (2014) no. 3, pp. 1046-1077

[4] T. Hou; X.H. Wu; Z. Cai Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comput., Volume 68 (1999) no. 227, pp. 913-943

[5] S.R. de Groot; P. Mazur Non-equilibrium Thermodynamics, North-Holland Publishing Company, Amsterdam, 1962

[6] O. Krehel; A. Muntean; P. Knabner Multiscale modeling of colloidal dynamics in porous media including aggregation and deposition, Adv. Water Resour., Volume 86 (2015), pp. 209-216

[7] U. Hornung; W. Jäger Diffusion, convection, adsorption, and reaction of chemicals in porous media, J. Differ. Equ., Volume 92 (1991), pp. 199-225

[8] C. Eck Homogenization of a phase field model for binary mixtures, Multiscale Model. Simul., Volume 3 (2004), pp. 1-27

[9] S. Agmon; A. Douglis; L. Nirenberg Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value conditions I, Commun. Pure Appl. Math., Volume 12 (1959), pp. 623-727

[10] G. Savaré Regularity results for elliptic equations in Lipschitz domains, J. Funct. Anal., Volume 152 (1998), pp. 176-201

[11] D. Gilbarg; N. Trudinger Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983

Cité par Sources :

Commentaires - Politique