Comptes Rendus
Acoustical scattering identification with local impedance through a spectral approach
Comptes Rendus. Mécanique, Volume 345 (2017) no. 5, pp. 301-316.

Acoustical scattering in waveguides is studied in this paper. The Wave Finite Element (WFE) approach is mainly used, since it allows the reduction of problems dealing with periodic waveguides. The paper deals with guided acoustical propagation, that is, propagation in a main direction is privileged. The scattering by a locally reacting lining is first studied. The liner can be characterised by its local impedance in this case. The equivalent surface impedance is therefore calculated. Then, scattering by a porous layer is considered. A full three-dimensional modelling of the lining is preferred since porous materials are bulk reacting. The scattering matrix of the lined part is computed, and acoustical scattering of high-order modes and conversion between modes are highlighted. The acoustic power attenuation is further evaluated. The response of ducts subjected to constraining boundary conditions is also calculated. Numerical results are presented and compared to those obtained with conventional approaches.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.03.006
Mots clés : Wave finite element, Acoustical propagation, Micro-perforated plate, Locally reacting lining, Scattering
Mohamed Amine Ben Souf 1, 2 ; Ahmed Kessentini 1, 2 ; Olivier Bareille 2 ; Mohamed Taktak 1 ; Mohamed N. Ichchou 2 ; Mohamed Haddar 1

1 Mechanics, Modelling and Production Laboratory (LA2MP), National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia
2 Laboratoire de tribologie et dynamique des systèmes (LTDS), École centrale de Lyon, 36, avenue Guy-de-Collongue, 69134 Écully cedex, France
@article{CRMECA_2017__345_5_301_0,
     author = {Mohamed Amine Ben Souf and Ahmed Kessentini and Olivier Bareille and Mohamed Taktak and Mohamed N. Ichchou and Mohamed Haddar},
     title = {Acoustical scattering identification with local impedance through a spectral approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {301--316},
     publisher = {Elsevier},
     volume = {345},
     number = {5},
     year = {2017},
     doi = {10.1016/j.crme.2017.03.006},
     language = {en},
}
TY  - JOUR
AU  - Mohamed Amine Ben Souf
AU  - Ahmed Kessentini
AU  - Olivier Bareille
AU  - Mohamed Taktak
AU  - Mohamed N. Ichchou
AU  - Mohamed Haddar
TI  - Acoustical scattering identification with local impedance through a spectral approach
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 301
EP  - 316
VL  - 345
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2017.03.006
LA  - en
ID  - CRMECA_2017__345_5_301_0
ER  - 
%0 Journal Article
%A Mohamed Amine Ben Souf
%A Ahmed Kessentini
%A Olivier Bareille
%A Mohamed Taktak
%A Mohamed N. Ichchou
%A Mohamed Haddar
%T Acoustical scattering identification with local impedance through a spectral approach
%J Comptes Rendus. Mécanique
%D 2017
%P 301-316
%V 345
%N 5
%I Elsevier
%R 10.1016/j.crme.2017.03.006
%G en
%F CRMECA_2017__345_5_301_0
Mohamed Amine Ben Souf; Ahmed Kessentini; Olivier Bareille; Mohamed Taktak; Mohamed N. Ichchou; Mohamed Haddar. Acoustical scattering identification with local impedance through a spectral approach. Comptes Rendus. Mécanique, Volume 345 (2017) no. 5, pp. 301-316. doi : 10.1016/j.crme.2017.03.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.03.006/

[1] J.O. Vasseur; P.A. Deymier; M. Beaugeois; Y. Pennec; B. Djafari-Rouhani; D. Prevost Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide, Z. Kristallogr. Cryst. Mater., Volume 220 (2005) no. 9–10, pp. 829-835

[2] L. Brillouin Wave Propagation in Periodic structures, Electric Filters and Crystal Lattices, Dover Publications, London, 1946

[3] W.X. Zhong; F.W. Williams On the direct solution of wave propagation for repetitive structures, J. Sound Vib., Volume 181 (1995) no. 3, pp. 485-501

[4] D. Duhamel; B.R. Mace; M.J. Brennan Finite element analysis of the vibrations of waveguides and periodic structures, J. Sound Vib., Volume 294 (2006) no. 1–2, pp. 205-220

[5] M.N. Ichchou; F. Bouchoucha; M.A. Ben Souf; O. Dessombz; M. Haddar Stochastic wave finite element for random periodic media through first-order perturbation, Comput. Methods Appl. Mech. Eng., Volume 200 (2011) no. 41–44, pp. 2805-2813

[6] O. Bareille; M. Kharrat; W. Zhou; M.N. Ichchou Distributed piezoelectric guided-t-wave generator, design and analysis, Mechatronics, Volume 22 (2012) no. 5, pp. 544-551

[7] J. Renno; B.R. Mace On the forced response of waveguides using the wave and finite element method, J. Sound Vib., Volume 329 (2010) no. 26, pp. 5474-5488

[8] L. Houillon; M.N. Ichchou; L. Jezequel Wave motion in thin-walled structures, J. Sound Vib., Volume 281 (2005) no. 3–5, pp. 483-507

[9] J.-M. Mencik; M.N. Ichchou Multi-mode propagation and diffusion in structures through finite elements, Eur. J. Mech. A, Solids, Volume 24 (2005) no. 5, pp. 877-898

[10] B.R. Mace; D. Duhamel; M.J. Brennan; L. Hinke Finite element prediction of wave motion in structural waveguides, J. Acoust. Soc. Amer., Volume 117 (2005) no. 5, pp. 2835-2843

[11] J.-M. Mencik; M.N. Ichchou Wave finite elements in guided elastodynamics with internal fluid, Int. J. Solids Struct., Volume 44 (2007) no. 7–8, pp. 2148-2167

[12] Y. Waki; B.R. Mace; M.J. Brennan Free and forced vibrations of a tyre using a wave finite element approach, J. Sound Vib., Volume 323 (2009) no. 3–5, pp. 737-756

[13] Q. Serra; M.N. Ichchou; J.-F. Deu Wave properties in poroelastic media using a wave finite element method, J. Sound Vib., Volume 335 (2015), pp. 125-146

[14] Y. Waki; B.R. Mace; M.J. Brennan Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides, J. Sound Vib., Volume 327 (2009) no. 1–2, pp. 92-108

[15] Y. Fan; M. Collet; M. Ichchou; L. Li; O. Bareille; Z. Dimitrijevic Energy flow prediction in built-up structures through a hybrid finite element/wave and finite element approach, Mech. Syst. Signal Process., Volume 66–67 (2016), pp. 137-158

[16] E. Manconi Modelling Wave Propagation in Two-Dimensional Structures Using a Wave/Finite Element Technique, University of Parma, Italy, 2008 (PhD thesis)

[17] D. Chronopoulos; B. Troclet; M. Ichchou; J.-P. Lainé A unified approach for the broadband vibroacoustic response of composite shells, Composites, Part B: Eng., Volume 43 (2012) no. 4, pp. 1837-1846

[18] M.A. Ben Souf; M.N. Ichchou; O. Bareille; M. Haddar On the dynamics of uncertain coupled structures through a wave based method in mid- and high-frequency ranges, Comput. Mech., Volume 52 (2013) no. 4, pp. 849-860

[19] M. Abom Measurement of the scattering matrix of acoustical two-ports, Mech. Syst. Signal Process., Volume 5 (1991) no. 2, pp. 89-104

[20] W.P. Bi; V. Pagneux; D. Lafarge; Y. Auregan Modelling of sound propagation in a non-uniform lined duct using a multi-modal propagation method, J. Sound Vib., Volume 289 (2006) no. 4–5, pp. 1091-1111

[21] W.P. Bi; V. Pagneux; D. Lafarge; Y. Auregan Characteristics of penalty mode scattering by rigid splices in lined ducts, J. Acoust. Soc. Amer., Volume 121 (2007) no. 3, pp. 1303-1312

[22] M. Taktak; J.M. Ville; M. Haddar; G. Gabard; F. Foucart An indirect method for the characterization of locally reacting liners, J. Acoust. Soc. Amer., Volume 127 (2010) no. 6, pp. 3548-3559

[23] A. Kessentini; M. Taktak; M.A. Ben Souf; O. Bareille; M.N. Ichchou; M. Haddar Computation of the scattering matrix of guided acoustical propagation by the wave finite element approach, Appl. Acoust., Volume 108 (2016), pp. 92-100

[24] A.W. Guess Calculation of perforated plate liner parameters from specified acoustic resistance and reactance, J. Sound Vib., Volume 40 (1975) no. 1, pp. 119-137

[25] T.H. Melling The acoustic impedance of perforates at medium and high sound pressure levels, J. Sound Vib., Volume 29 (1973) no. 1, pp. 1-65

[26] D. Maa Potential of microperforated panel absorber, J. Acoust. Soc. Amer., Volume 104 (1998) no. 5, pp. 2861-2866

[27] J.M. Renno; B.R. Mace On the forced response of wave guides using the wave and finite element method, J. Sound Vib., Volume 329 (2010) no. 26, pp. 5474-5488

[28] J.F. Allard; N. Atalla Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, John Wiley Sons, 2009

[29] Y. Yasuda; S. Uenoy; H. Sekine A note on applicability of locally-reacting boundary conditions for Delany–Bazley type porous material layer backed by rigid wall, Acoust. Sci. Technol., Volume 36 (2015) no. 5, pp. 459-462

[30] Y. Auregan; A. Starobinski Determination of acoustical energy dissipation/production potentially from the acoustical transfer functions of a multiport, Acta Acust. Acust., Volume 85 (1999), pp. 788-792

[31] B.S. Howard; S. Cazzolato Acoustic Analyses Using MATLAB and ANSYS, Taylor & Francis Group, 2014

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Properties of waveguides filled with anisotropic metamaterials

Abhinav Bhardwaj; Dheeraj Pratap; Mitchell Semple; ...

C. R. Phys (2020)


A comparison of the damping properties of perforated plates backed by a cavity operating at low and high Strouhal numbers

Alessandro Scarpato; Sébastien Ducruix; Thierry Schuller

C. R. Méca (2013)


Lattice Boltzmann formulation for flows with acoustic porous media

Chenghai Sun; Franck Pérot; Raoyang Zhang; ...

C. R. Méca (2015)