[Propriétés de guides d’ondes constitués d’un métamatériau anisotrope]
Les métamatériaux sont des matériaux composites structurés de manière artificielle qui possèdent des propriétés que l’on ne trouve pas à l’état naturel. En général, les propriétés structurelles des métamatériaux sont anisotropes. Un guide d’ondes constitué d’un métamatériau possède des propriétés uniques inatteignables dans des guides d’ondes conventionnels, telles que la propagation d’onde rétrogrades et des modes sous les fréquences de coupure du mode fondamental d’un guide d’ondes conventionnel, une vitesse de groupe nulle etc. Le matériau constituant le guide d’ondes peut être anisotrope avec les éléments (ou des combinaisons d’éléments) des tenseurs de permittivité et perméabilité qui prennent des valeurs positives ou négatives, ce qui donne lieu à une riche variété de phénomènes. Par ailleurs, les modes d’un guide d’ondes cylindrique constitué d’un métamatériau hyperbolique sont décrits par des fonctions de Bessel inhabituelles présentant des ordres complexes. Dans de nombreuses situations, la région siège de la propagation d’ondes est isotrope, et est entourée de métamatériaux anisotropes avec différentes épaisseurs et inversement. Diverses géométries de guides d’ondes en métamatériaux tels que des paires de plaques parallèles, des guides rectangulaires et cylindriques constitués de milieux anisotropes, ainsi que des guides d’ondes à cœur creux avec une gaine en métamatériaux ou des linings ont été démontrés expérimentalement. L’anisotropie peut être uniaxe ou biaxe en fonction de l’orientation de la structure. Nous faisons un état de l’art sur les avancées dans la théorie et les applications des guides d’ondes constitués de métamatériaux avec une structuration sub-longueur d’onde dont les propriétés sont anisotropes ou même hyperboliques sur le spectre électromagnétique. En examinant le comportement du champ dans ce type de guides d’ondes, un lien est établi avec la théorie de la transmission extraordinaire de la lumière à travers des réseaux de trous sub-longueur d’onde dans un écran métallique. Les applications potentielles vont de l’imagerie médicale à résonance magnétique améliorée au bouclier électromagnétique aux fréquences radio en passant par des applications étonnantes en imagerie et au couplage efficace des émissions de petites sources avec des guides d’ondes aux fréquences optiques.
Metamaterials are artificially structured composite materials that show unusual properties not usually available in natural materials. In general, metamaterial structures and properties are anisotropic. A waveguide filled with an anisotropic metamaterial shows unique properties not achievable in conventional waveguides, such as propagation of backward waves and modes below the cut-off frequencies of the conventional fundamental mode, zero group velocity etc. The waveguide filler material can be anisotropic with the tensorial permittivity and permeability components having positive or negative values, and combinations thereof, giving rise to a rich variety of phenomena. Further, modes in a cylindrical waveguide filled with a hyperbolic metamaterial are described by unusual Bessel modes of complex orders. In many situations, the wave propagating region is isotropic, and it is enclosed by anisotropic metamaterials with different thicknesses and contrarily the propagating region is might be anisotropic that is enclosed by isotropic in some other situations. Various metamaterial waveguide geometries like a pair of parallel plates, waveguides with rectangular or cylindrical cross-section filled with anisotropic metamaterials as well as hollow-core waveguides with metamaterial claddings or linings have been demonstrated experimentally. The anisotropy can be uniaxial or biaxial depending on the orientation of structure. Here we review the advances in the theory and applications of waveguides filled with subwavelength structured metamaterials with anisotropic or even hyperbolic properties across the electromagnetic spectrum. By examining the field behaviour in such waveguides, connection is made to the extraordinary transmission of light through arrays of subwavelength sized apertures in a metallic screen. Potential applications range from enhanced MRI imaging and electromagnetic shielding at radio frequencies to intriguing imaging applications and efficient coupling of the emitted radiation from small sources into waveguides at optical frequencies.
Publié le :
Mot clés : Métamatériaux, Guides d’ondes structurés, Matériaux anisotropes, Dispersion hyperbolique, Résonateur à anneau fendu, Matériaux en fils métalliques minces
Abhinav Bhardwaj 1 ; Dheeraj Pratap 2 ; Mitchell Semple 3 ; Ashwin K. Iyer 3 ; Arun M. Jayannavar 4 ; S. Anantha Ramakrishna 5, 6
@article{CRPHYS_2020__21_7-8_677_0, author = {Abhinav Bhardwaj and Dheeraj Pratap and Mitchell Semple and Ashwin K. Iyer and Arun M. Jayannavar and S. Anantha Ramakrishna}, title = {Properties of waveguides filled with anisotropic metamaterials}, journal = {Comptes Rendus. Physique}, pages = {677--711}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {7-8}, year = {2020}, doi = {10.5802/crphys.19}, language = {en}, }
TY - JOUR AU - Abhinav Bhardwaj AU - Dheeraj Pratap AU - Mitchell Semple AU - Ashwin K. Iyer AU - Arun M. Jayannavar AU - S. Anantha Ramakrishna TI - Properties of waveguides filled with anisotropic metamaterials JO - Comptes Rendus. Physique PY - 2020 SP - 677 EP - 711 VL - 21 IS - 7-8 PB - Académie des sciences, Paris DO - 10.5802/crphys.19 LA - en ID - CRPHYS_2020__21_7-8_677_0 ER -
%0 Journal Article %A Abhinav Bhardwaj %A Dheeraj Pratap %A Mitchell Semple %A Ashwin K. Iyer %A Arun M. Jayannavar %A S. Anantha Ramakrishna %T Properties of waveguides filled with anisotropic metamaterials %J Comptes Rendus. Physique %D 2020 %P 677-711 %V 21 %N 7-8 %I Académie des sciences, Paris %R 10.5802/crphys.19 %G en %F CRPHYS_2020__21_7-8_677_0
Abhinav Bhardwaj; Dheeraj Pratap; Mitchell Semple; Ashwin K. Iyer; Arun M. Jayannavar; S. Anantha Ramakrishna. Properties of waveguides filled with anisotropic metamaterials. Comptes Rendus. Physique, Volume 21 (2020) no. 7-8, pp. 677-711. doi : 10.5802/crphys.19. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.19/
[1] Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett., Volume 76 (1996) no. 25, 4773
[2] Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microw. Theory Tech., Volume 47 (1999) no. 11, pp. 2075-2084
[3] The electrodynamics of substances with simultaneously negative values of and , Phys.-Usp., Volume 10 (1968) no. 4, pp. 509-514
[4] Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., Volume 84 (2000) no. 18, 4184
[5] Negative refraction makes a perfect lens, Phys. Rev. Lett., Volume 85 (2000) no. 18, 3966
[6] Metamaterials: electromagnetic enhancement at zero-index transition, Opt. Lett., Volume 33 (2008) no. 20, pp. 2350-2352
[7] Experimental demonstration of near-infrared negative-index metamaterials, Phys. Rev. Lett., Volume 95 (2005) no. 13, 137404
[8] Electromagnetic parameter retrieval from inhomogeneous metamaterials, Phys. Rev. E, Volume 71 (2005) no. 3, 036617
[9] Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors, Phys. Rev. Lett., Volume 90 (2003) no. 7, 077405
[10] Optical hyperlens: far-field imaging beyond the diffraction limit, Opt. Express, Volume 14 (2006) no. 18, pp. 8247-8256
[11] Topological transitions in metamaterials, Science, Volume 336 (2012) no. 6078, pp. 205-209
[12] Slow-light propagation in a cylindrical dielectric waveguide with metamaterial cladding, J. Phys. D: Appl. Phys., Volume 44 (2011) no. 47, 475103
[13] Anisotropic metamaterial optical fibers, Opt. Express, Volume 23 (2015) no. 7, 9074
[14] Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions, J. Opt. Soc. Am. B, Volume 29 (2012) no. 9, pp. 2462-2477
[15] Guided modes in a waveguide filled with a pair of single-negative (sng), double-negative (dng), and/or double-positive (dps) layers, IEEE Trans. Microw. Theory Tech., Volume 52 (2004) no. 1, pp. 199-210
[16] Enhanced coupling of light from subwavelength sources into a hyperbolic metamaterial fiber, J. Lightwave Technol., Volume 37 (2019) no. 13, pp. 3064-3072
[17] Below-cutoff propagation in metamaterial-lined circular waveguides, IEEE Trans. Microw. Theory Tech., Volume 61 (2013) no. 9, pp. 3169-3178
[18] Guided modes in negative-refractive-index waveguides, Phys. Rev. E, Volume 67 (2003) no. 5, 057602
[19] Propagation of wave in a cylindrical waveguide filled with hyperbolic negative index medium, Microw. Opt. Technol. Lett., Volume 62 (2020) no. 11, pp. 3385-3390
[20] Optical Solitons: Theoretical and Experimental Challenges, Vol. 613, Springer Science & Business Media, Heidelberg, Germany, 2003
[21] Photonic crystal fibers, Science, Volume 299 (2003) no. 5605, pp. 358-362
[22] Fiber-drawn double split ring resonators in the terahertz range, Opt. Mater. Express, Volume 2 (2012) no. 9, pp. 1254-1259
[23] Nonresonant structured material with extreme effective parameters, Phys. Rev. B, Volume 78 (2008) no. 3, 033108
[24] Wire metamaterials: physics and applications, Adv. Mater., Volume 24 (2012) no. 31, pp. 4229-4248
[25] Plasmonic space folding: focusing surface plasmons via negative refraction in complementary media, ACS Nano, Volume 5 (2011) no. 9, pp. 6819-6825
[26] Physics and Applications of Negative Refractive Index Materials, CRC Press, Bellingham, Washington, USA, 2008
[27] Low frequency plasmons in thin-wire structures, J. Phys.: Condens. Matter, Volume 10 (1998) no. 22, 4785
[28] The dielectric constant of a composite material—a problem in classical physics, Phys. Rep., Volume 43 (1978) no. 9, pp. 377-407
[29] Bruggeman formalism versus, J. Nanophoton., Volume 6 (2012) no. 1, 069501
[30] Homogenization of 3d finite photonic crystals with heterogeneous permittivity and permeability, Waves Random Complex Media, Volume 17 (2007) no. 4, pp. 653-697
[31] Generalized method for retrieving effective parameters of anisotropic metamaterials, Opt. Express, Volume 22 (2014) no. 24, pp. 29937-29953
[32] On electromagnetic waves in biaxial bianisotropic media, Electromagnetics, Volume 19 (1999) no. 4, pp. 351-362
[33] Retrieval of the effective constitutive parameters of bianisotropic metamaterials, Phys. Rev. E, Volume 71 (2005) no. 4, 046610
[34] Bianisotropic photonic metamaterials, IEEE J. Sel. Top. Quantum Electron., Volume 16 (2009) no. 2, pp. 367-375
[35] Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific, Singapore, 2010
[36] Phase retrieval of reflection and transmission coefficients from Kramers–Kronig relations, J. Opt. Soc. Am. A, Volume 32 (2015) no. 3 (ts), pp. 456-462
[37] Causality and passivity properties of effective parameters of electromagnetic multilayered structures, Phys. Rev. B, Volume 88 (2013), 165104
[38] Electromagnetics of Bi-anisotropic Materials-Theory and Application, Vol. 11, Gordon and Breach Science Publishers, Norwich, UK, 2001
[39] Highly ordered monocrystalline silver nanowire arrays, J. Appl. Phys., Volume 91 (2002) no. 5, pp. 3243-3247
[40] Silver columnar thin-film-based half-wavelength antennas for bright directional emission from nanodiamond nitrogen-vacancy centers, Phys. Rev. Appl., Volume 11 (2019) no. 3, 034002
[41] Hyperbolic metamaterials, Nat. Photon., Volume 7 (2013) no. 12, 948
[42] Hyperbolic metamaterials and their applications, Prog. Quantum Electron., Volume 40 (2015), pp. 1-40
[43] Planar negative refractive index media using periodically LC loaded transmission lines, IEEE Trans. Microw. Theory Tech., Volume 50 (2002) no. 12, pp. 2702-2712
[44] Novel microwave devices and structures based on the transmission line approach of meta-materials, IEEE MTT-S International Microwave Symposium Digest, 2003, Volume 1, IEEE, 2003, pp. 195-198
[45] Transmission line based metamaterials and their microwave applications, Microw. Mag., Volume 5 (2004) no. 3, pp. 34-50
[46] Waveguide containing a backward-wave slab, Radio Sci., Volume 38 (2003) no. 6, p. 9-1
[47] Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency, IEEE Trans. Antennas Propag., Volume 51 (2003) no. 10, pp. 2558-2571
[48] Analysis of electromagnetic-wave modes in anisotropic slab waveguide, IEEE Trans. Microw. Theory Tech., Volume 22 (1974) no. 2, pp. 86-92
[49] Waves in a slab of uniaxial bw medium, J. Electromagn. Waves Appl., Volume 16 (2002) no. 3, pp. 303-318
[50] Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability, J. Appl. Phys., Volume 93 (2003) no. 11, pp. 9386-9388
[51] A study of waveguides filled with anisotropic metamaterials, Microw. Opt. Technol. Lett., Volume 41 (2004) no. 5, pp. 426-431
[52] Waveguide miniaturization using uniaxial negative permeability metamaterial, IEEE Trans. Antennas Propag., Volume 53 (2005) no. 1, pp. 110-119
[53] Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides, Phys. Rev. Lett., Volume 89 (2002) no. 18, 183901
[54] Fundamental modal properties of srr metamaterials and metamaterial based waveguiding structures, Opt. Express, Volume 17 (2009) no. 8, pp. 6101-6117
[55] Backward and forward waves in a uniaxial anisotropic metamaterial waveguide, 2008 International Conference on Microwave and Millimeter Wave Technology, Volume 1, IEEE, 2008, pp. 54-57
[56] Manipulating light polarizations with a hyperbolic metamaterial waveguide, Opt. Lett., Volume 40 (2015) no. 20, pp. 4595-4598
[57] Spontaneous emission inside a hyperbolic metamaterial waveguide, ACS Photon., Volume 4 (2017) no. 10, pp. 2513-2521
[58] Extraordinary optical transmission through a rectangular hole filled with extreme uniaxial metamaterials, Opt. Lett., Volume 42 (2017) no. 12, pp. 2386-2389
[59] A class of circular waveguiding structures containing cylindrically anisotropic metamaterials: Applications from radio frequency/microwave to optical frequencies, J. Appl. Phys., Volume 119 (2016) no. 8, 083103
[60] Bessel functions of purely imaginary order, with an application to second-order linear differential equations having a large parameter, SIAM J. Math. Anal., Volume 21 (1990) no. 4, pp. 995-1018
[61] The asymptotic theory of dispersion relations containing Bessel functions of imaginary order, Proc. R. Soc. A, Volume 468 (2012) no. 2148, pp. 4008-4023
[62] Drawn metamaterials with plasmonic response at terahertz frequencies, Appl. Phys. Lett., Volume 96 (2010) no. 19, 191101
[63] Fabricating metamaterials using the fiber drawing method, J. Vis. Exp., Volume 68 (2012), e4299
[64] Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances, Nat. Commun., Volume 4 (2013), 2706
[65] Hollow-core infrared fiber incorporating metal-wire metamaterial, Opt. Express, Volume 17 (2009) no. 17, pp. 14851-14864
[66] Inhomogeneously filled, cylindrically anisotropic metamaterial optical fiber, J. Nanophoton., Volume 12 (2018) no. 3, 033002
[67] preprint, arXiv:1903.10296 (2018)
Nanoporous alumina microtubes for metamaterial and plasmonic applications,[68] Optical Metamaterials: Fundamentals and Applications, Springer, New York, 2009
[69] Handbook of Optical Materials, CRC Press, Washington, D.C., 2003
[70] Architecting a nonlinear hybrid crystal–glass metamaterial fiber for all-optical photonic integration, J. Mater. Chem. C, Volume 6 (2018) no. 7, pp. 1659-1669
[71] Ligand-driven and full-color-tunable fiber source: toward next-generation clinic fiber-endoscope tomography with cellular resolution, ACS Omega, Volume 1 (2016) no. 4, pp. 552-565
[72] Atomically smooth hybrid crystalline-core glass-clad fibers for low-loss broadband wave guiding, Opt. Express, Volume 24 (2016) no. 18, pp. 20089-20106
[73] Hyperbolic metamaterial near-field coupler, 2019 IEEE Asia-Pacific Microwave Conference (APMC), IEEE, 2019, pp. 1736-1738
[74] Miniaturized circular-waveguide probe antennas using metamaterial liners, IEEE Trans. Antennas Propag., Volume 63 (2014) no. 1, pp. 428-433
[75] Effective-medium properties of cylindrical transmission-line metamaterials, IEEE Antennas Wirel. Propag. Lett., Volume 10 (2011), pp. 1491-1494
[76] On the tapered optical fibers with radially anisotropic liquid crystal clad, Prog. Electromagn. Res., Volume 115 (2011), pp. 461-475
[77] Robust optical fiber using single negative metamaterial cladding, IEEE Photon. Technol. Lett., Volume 25 (2013) no. 11, pp. 1043-1046
[78] Investigation on characteristics of w-type fiber with an inner cladding made of negative refractive index materials, Optik, Volume 125 (2014) no. 20, pp. 6127-6130
[79] Experimental verification of below-cutoff propagation in miniaturized circular waveguides using anisotropic ENNZ metamaterial liners, IEEE Trans. Microw. Theory Tech., Volume 64 (2016) no. 4, pp. 1297-1305
[80] New approach for extraordinary transmission through an array of subwavelength apertures using thin ENNZ metamaterial liners, Opt. Express, Volume 23 (2015) no. 16, 20356
[81] Theory of diffraction by small holes, Phys. Rev., Volume 66 (1944), pp. 163-182
[82] Fano resonances in photonics, Nat. Photon., Volume 11 (2017) no. 9, pp. 543-554
[83] Metamaterial-based efficient electrically small antennas, IEEE Trans. Antennas Propag., Volume 54 (2006) no. 7, pp. 2113-2130
[84] Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers, J. Appl. Phys., Volume 97 (2005) no. 9, 094310
[85] An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability, IEEE Antennas Wirel. Propag. Lett., Volume 1 (2002), pp. 10-13
[86] An overview of salient properties of planar guided-wave structures with Double-Negative (DNG) and Single-Negative (SNG) layers, Negative-Refraction Metamaterials, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2005, pp. 339-380
[87] Guided modes in a waveguide filled with a pair of Single-Negative (SNG), Double-Negative (DNG), and/or Double-Positive (DPS) layers, IEEE Trans. Microw. Theory Tech., Volume 52 (2004) no. 1, pp. 199-210
[88] Far-field magnification of subdiffraction conducting features using metamaterial-lined aperture arrays, IEEE Trans. Antennas Propag., Volume 66 (2018) no. 7, pp. 3482-3490
[89] Optical metasurface based on subwavelength nanoplasmonic metamaterial-lined apertures, IEEE J. Sel. Top. Quantum Electron., Volume 25 (2019) no. 3, pp. 1-8
[90] Optical metamaterials based on optical nanocircuits, Proc. IEEE, Volume 99 (2011) no. 10, pp. 1669-1681
[91] From RF circuits to optical nanocircuits, IEEE Microw. Mag., Volume 13 (2012) no. 4, pp. 100-113
[92] Nanoinsulators and nanoconnectors for optical nanocircuits, J. Appl. Phys., Volume 103 (2008) no. 6, 064305
[93] Near-infrared metatronic nanocircuits by design, Phys. Rev. Lett., Volume 111 (2013) no. 7, 073904
[94] Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials, Science (New York, N.Y.), Volume 317 (2007) no. 5845, pp. 1698-1702
[95] Extraordinary optical transmission through sub-wavelength hole arrays, Nature, Volume 391 (1998) no. 6668, pp. 667-669
[96] Mimicking surface plasmons with structured surfaces, Science (New York, N.Y.), Volume 305 (2004) no. 5685, pp. 847-848
[97] On a remarkable case of uneven distribution of light in a diffraction grating spectrum, Proc. Phys. Soc. Lond., Volume 18 (1902) no. 1, p. 269
[98] A new theory of wood’s anomalies on optical gratings, Appl. Opt., Volume 4 (1965) no. 10, pp. 1275-1297
[99] Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective, IEEE Trans. Microw. Theory Tech., Volume 56 (2008) no. 12, pp. 3108-3120
[100] An equivalent circuit model of FSS-based metamaterial absorber using coupled line theory, IEEE Antennas Wirel. Propag. Lett., Volume 14 (2015), pp. 511-514
[101] Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, New York, USA, 2000
[102] Stereometamaterials, Nat. Photon., Volume 3 (2009) no. 3, pp. 157-162
[103] Twisted split-ring-resonator photonic metamaterial with huge optical activity, Opt. Lett., Volume 35 (2010) no. 10, 1593
[104] Fundamental limits of ultrathin metasurfaces, Sci. Rep., Volume 7 (2017) no. 1, 43722
Cité par Sources :
Commentaires - Politique