In this paper, we consider a spectral problem with singular perturbation of density located near the boundary of the domain, depending on a small parameter. We prove the compactness theorem and study the behavior of eigenelements to the given problem, as the small parameter tends to zero.
Dans cet article, nous considérons un problème spectral avec une perturbation singulière de la densité située près de la limite du domaine, dépendant d'un petit paramètre. Nous prouvons le théorème de la compacité et étudions le comportement des éléments génériques du problème donné, lorsque le petit paramètre tend vers zéro.
Accepted:
Published online:
Mots-clés : Masses concentrées, Homogénéisation, Fonctions aléatoires
Gregory A. Chechkin 1; Tatiana P. Chechkina 2
@article{CRMECA_2017__345_10_671_0, author = {Gregory A. Chechkin and Tatiana P. Chechkina}, title = {Asymptotic behavior of the spectrum of an elliptic problem in a domain with aperiodically distributed concentrated masses}, journal = {Comptes Rendus. M\'ecanique}, pages = {671--677}, publisher = {Elsevier}, volume = {345}, number = {10}, year = {2017}, doi = {10.1016/j.crme.2017.06.010}, language = {en}, }
TY - JOUR AU - Gregory A. Chechkin AU - Tatiana P. Chechkina TI - Asymptotic behavior of the spectrum of an elliptic problem in a domain with aperiodically distributed concentrated masses JO - Comptes Rendus. Mécanique PY - 2017 SP - 671 EP - 677 VL - 345 IS - 10 PB - Elsevier DO - 10.1016/j.crme.2017.06.010 LA - en ID - CRMECA_2017__345_10_671_0 ER -
%0 Journal Article %A Gregory A. Chechkin %A Tatiana P. Chechkina %T Asymptotic behavior of the spectrum of an elliptic problem in a domain with aperiodically distributed concentrated masses %J Comptes Rendus. Mécanique %D 2017 %P 671-677 %V 345 %N 10 %I Elsevier %R 10.1016/j.crme.2017.06.010 %G en %F CRMECA_2017__345_10_671_0
Gregory A. Chechkin; Tatiana P. Chechkina. Asymptotic behavior of the spectrum of an elliptic problem in a domain with aperiodically distributed concentrated masses. Comptes Rendus. Mécanique, Volume 345 (2017) no. 10, pp. 671-677. doi : 10.1016/j.crme.2017.06.010. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.06.010/
[1] Some differential equations of mathematical physics having applications in technical questions, Rep. Nikolaev Naval Acad., Volume 2 (1913), pp. 325-348 (in Russian)
[2] Perturbation of eigenvalues in thermoelasticity and vibration of systems with concentrated masses, Trends and Applications of Pure Mathematics to Mechanics, Lecture Notes in Phys., vol. 195, Springer-Verlag, Berlin, 1984, pp. 346-368
[3] On eigenoscillations of a string with an attached mass, Sib. Math. J., Volume 29 (1989), pp. 744-760
[4] Vibration and Coupling of Continuous Systems. Asymptotic Methods, Springer-Verlag, Berlin, 1989
[5] On the eigenfunctions associated with the high frequencies in systems with a concentrated mass, J. Math. Pures Appl., Volume 78 (1999) no. 9, pp. 841-865
[6] Non-periodic boundary homogenization and “light” concentrated masses, Indiana Univ. Math. J., Volume 54 (2005), pp. 321-348
[7] Eigenvibrations of thick cascade junctions with “Super Heavy” concentrated masses, Izv. Math., Volume 79 (2015) no. 3, pp. 467-511
[8] Operators with boundary conditions of fine-scaled structure, Math. Notes, Volume 65 (1999) no. 4, pp. 418-429
[9] Methods and Applications, American Mathematical Society, Providence, RI, USA, 2007
[10] Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992
[11] Homogenization of Differential Operators and Integral Functionals, Springer–Verlag, Berlin, 1994
Cited by Sources:
☆ The paper was partially supported by RFBR grant 15-01-07920.
Comments - Policy