Comptes Rendus
The effect of indentation sequence on rock breakages: A study based on laboratory and numerical tests
Comptes Rendus. Mécanique, Volume 346 (2018) no. 1, pp. 26-38.

Rock may response differently to external loads applied in different sequences. Thus, we conducted indentation tests to investigate the effect of the indentation sequence on rock breakages. Sequential indentations, consuming less indentation energy, usually resulted in larger and deeper grooves and then led to lower specific energies. Thus, we conclude that sequential indentations occur instead of simultaneous indentations form larger grooves with the same indentation energy. To further validate this conclusion, we performed a series of numerical tests. The numerical analysis of stress evolution shows that, for simultaneous indentations, the propagation of an internal crack from an inner rim restrained the propagation of the other internal crack from the other inner rim. However, the chipping pattern varied for sequential indentations. In the first indentation process, an internal crack, initiating from an inner rim, is usually connected with an internal crack caused by the second indentation. The deflection angles of the internal cracks for the sequential indentations were smaller because of the lower compressive stress in the horizontal direction. Then, these smaller deflection angles led to larger chips.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.11.004
Mots clés : Indentation sequence, Crack propagation, Stress evolution, Indentation efficiency
Jie Liu 1, 2 ; Jun Wang 1

1 Department of Building Engineering, Hunan Institute of Engineering, Xiangtan, China
2 School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, Hunan, China
@article{CRMECA_2018__346_1_26_0,
     author = {Jie Liu and Jun Wang},
     title = {The effect of indentation sequence on rock breakages: {A} study based on laboratory and numerical tests},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {26--38},
     publisher = {Elsevier},
     volume = {346},
     number = {1},
     year = {2018},
     doi = {10.1016/j.crme.2017.11.004},
     language = {en},
}
TY  - JOUR
AU  - Jie Liu
AU  - Jun Wang
TI  - The effect of indentation sequence on rock breakages: A study based on laboratory and numerical tests
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 26
EP  - 38
VL  - 346
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2017.11.004
LA  - en
ID  - CRMECA_2018__346_1_26_0
ER  - 
%0 Journal Article
%A Jie Liu
%A Jun Wang
%T The effect of indentation sequence on rock breakages: A study based on laboratory and numerical tests
%J Comptes Rendus. Mécanique
%D 2018
%P 26-38
%V 346
%N 1
%I Elsevier
%R 10.1016/j.crme.2017.11.004
%G en
%F CRMECA_2018__346_1_26_0
Jie Liu; Jun Wang. The effect of indentation sequence on rock breakages: A study based on laboratory and numerical tests. Comptes Rendus. Mécanique, Volume 346 (2018) no. 1, pp. 26-38. doi : 10.1016/j.crme.2017.11.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.11.004/

[1] H. Bejari; J. Khademi Hamidi Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses, Rock Mech. Rock Eng., Volume 46 (2012) no. 4, pp. 897-907

[2] Q.M. Gong; J. Zhao Influence of rock brittleness on TBM penetration rate in Singapore granite, Tunn. Undergr. Space Technol., Volume 22 (2007) no. 3, pp. 317-324

[3] H. Haeri; M.F. Marji Simulating the crack propagation and cracks coalescence underneath TBM disc cutters, Arab. J. Geosci., Volume 9 (2016) no. 2, pp. 1-10

[4] H.Y. Huang; E. Detournay Intrinsic length scales in tool–rock interaction, Int. J. Geomech., Volume 8 (2008), pp. 39-44

[5] Q. Liu; Y. Pan; J. Liu; X. Kong; K. Shi Comparison and discussion on fragmentation behavior of soft rock in multi-indentation tests by a single TBM disc cutter, Tunn. Undergr. Space Technol., Volume 57 (2016), pp. 151-161

[6] H. Huang; B. Damjanal; B. Detournay Normal wedge indentation in rocks with lateral confinement, Rock Mech. Rock Eng., Volume 31 (1998) no. 2, pp. 81-94

[7] Q.M. Gong; Y.Y. Jiao; J. Zhao Numerical modeling of the effects of joint spacing on rock fragmentation by TBM cutters, Tunn. Undergr. Space Technol., Volume 21 (2006) no. 1, pp. 46-55

[8] Q.M. Gong; J. Zhao; Y.Y. Jiao Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters, Tunn. Undergr. Space Technol., Volume 20 (2005), pp. 183-191

[9] L.J. Yin; Q.M. Gong; H.S. Ma; J. Zhao; X.B. Zhao Use of indentation tests to study the influence of confining stress on rock fragmentation by a TBM cutter, Int. J. Rock Mech. Min. Sci., Volume 72 (2014), pp. 261-276

[10] N. Innaurato; C. Oggeri; P.P. Oreste; R. Vinai Experimental and numerical studies on rock breaking with TBM tools under high stress confinement, Rock Mech. Rock Eng., Volume 40 (2007) no. 5, pp. 429-451

[11] H.S. Ma; L.J. Yin; H.G. Ji Numerical study of the effect of confining stress on rock fragmentation by TBM cutter, Int. J. Rock Mech. Min. Sci., Volume 48 (2011), pp. 1021-1033

[12] T. Moon; J. Oh A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method, Rock Mech. Rock Eng., Volume 45 (2011), pp. 837-849

[13] S.F. Zhai; X.P. Zhou; J. Bi; N. Xiao The effects of joints on rock fragmentation by TBM cutters using General Particle Dynamics, Tunn. Undergr. Space Technol., Volume 57 (2016), pp. 162-172

[14] X. Zhu; W. Liu; X. He The investigation of rock indentation simulation based on discrete element method, KSCE J. Civ. Eng. (2016) | DOI

[15] J. Liu; P. Cao; K.H. Li A study on isotropic rock breaking with TBM cutters under different confining stresses, Geotech. Geolog. Eng., Volume 33 (2015) no. 6, pp. 1379-1394

[16] J. Liu; P. Cao; D.Y. Han Sequential indentation tests to investigate the influence of confining stress on rock breakage by tunnel boring machine cutter in a biaxial state, Rock Mech. Rock Eng., Volume 49 (2016), pp. 1479-1495

[17] S. Yagiz Assessment of brittleness using rock strength and density with punch penetration test, Tunn. Undergr. Space Technol., Volume 24 (2009), pp. 66-74

[18] Y. Chen; P. Cao; R. Chen Effect of water–rock interaction on the morphology of a rock surface, Int. J. Rock Mech. Min. Sci., Volume 47 (2010), pp. 816-822

[19] Y.L. Zhao; L.Y. Zhang; W.J. Wang; J.Z. Tang; H. Lin; W. Wan Transient pulse test and morphological analysis of single rock fractures, Int. J. Rock Mech. Min. Sci., Volume 91 (2017), pp. 139-154

[20] L. Scholtès; F.V. Donzé A DEM analysis of step-path failure in jointed rock slopes, C. R., Mecanique, Volume 343 (2015), pp. 155-165

[21] Y. Xie; P. Cao; J. Liu; L. Dong Influence of crack surface friction on crack initiation and propagation: a numerical investigation based on extended finite element method, Comput. Geotech., Volume 74 (2016), pp. 1-14

[22] Itasca Consulting Group, Users' manual for particle flow code in 2 dimensions (PFC2D). Version 3.1, Minneapolis, Minnesota, 2002.

[23] X.P. Zhang; Q. Liu; S. Wu; X. Tang Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression, Eng. Geol., Volume 199 (2015), pp. 74-90

[24] J. Liu; P. Cao; Z. Jiang; Y.L. Zhao; R.H. Cao Numerical simulation on effects of embedded crack on rock fragmentation by a tunnel boring machine cutter, J. Cent. South Univ., Volume 21 (2014), pp. 3302-3308

[25] Y. Zhao; L. Zhang; W. Wang; C.Z. Pu; W. Wan; J. Tang Cracking and stress–strain behavior of rock-like material containing two flaws under uniaxial compression, Rock Mech. Rock Eng., Volume 49 (2016) no. 7, pp. 2665-2687

[26] J. Bi; X.P. Zhou; Q.H. Qian The 3D numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads, Rock Mech. Rock Eng., Volume 49 (2015) no. 5, pp. 1611-1627

[27] T. Moon; M. Nakagawa; J. Berger Measurement of fracture toughness using the distinct element method, Int. J. Rock Mech. Min. Sci., Volume 44 (2007), pp. 449-456

[28] S.Y. Li; T.M. He; X.C. Yin, Press of Chinese University of Science and Technology, Hefei (2010), pp. 157-169 (in Chinese)

[29] J.W. Cho; S. Jeon; H.Y. Jeong; S.H. Chang Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement, Tunn. Undergr. Space Technol., Volume 35 (2013), pp. 37-54

[30] J. Liu; P. Cao; D.Y. Han The influence of confining stress on optimum spacing of TBM cutters for cutting granite, Int. J. Rock Mech. Min. Sci., Volume 88 (2016), pp. 165-174

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Extending the contact regimes to single-crystal indentations

Jorge Alcalá; Daniel Esqué-de los Ojos

C. R. Méca (2011)


A new method to determine the true projected contact area using nanoindentation testing

Gaylord Guillonneau; Guillaume Kermouche; Jean-Michel Bergheau; ...

C. R. Méca (2015)


An approximate solution to the problem of cone or wedge indentation of elastoplastic solids

Guillaume Kermouche; Jean-Luc Loubet; Jean-Michel Bergheau

C. R. Méca (2005)