[Complete analytical description of workspace boundaries for a planar serial manipulator]
We give a general and analytical description of plan workspace boundaries, i.e. the boundaries of the part of the space that is reached by the extremity of a human or robot arm. The proposed method is decomposed into three independent steps, for which we do not use calculus of derivatives, determinants and eigenvalues, or numerical resolutions of non-linear problems, which are often used in the literature. The first step, already presented in previous works, consists in interpreting geometrically the necessary Jacobian rank deficiency of the position function at the boundary, and an alignment condition of some joints allows us to determine a union of arcs of circle, which contains the boundary. Then, for all arc of circle, the study of the infinitesimal displacement of a point with regard to this circle allows one to eliminate all or a part of arcs of circle, previously defined, which is not on the boundary. Finally, a global course of the arcs of circle allows us to determine the outer boundary and the inner boundary of the possible void that contains the origin.
Nous proposons une méthode générale et analytique de description des limites de l'espace de travail plan, c'est-à-dire la frontière de la partie de l'espace du plan atteinte par l'extrémité d'un bras humain ou de robot. La méthode proposée est décomposée en trois étapes indépendantes, aucune ne faisant appel à des calculs de dérivées, de déterminants ou de valeurs propres, ou utilisant des méthodes de résolution numérique de problèmes non linéaires, tous souvent utilisés dans la littérature. La première étape, déjà présentée dans des travaux précédents, consiste à interpréter de façon géométrique la nécessaire dégénérescence de la matrice jacobienne de la fonction de position, au bord de l'espace de travail et une condition d'alignement de certaines articulations permet de déterminer une réunion d'arcs de cercle qui contiennent la frontière. Ensuite, pour chacun des arcs de cercle, l'étude de la variation infinitésimale d'un point par rapport à ce cercle permet d'éliminer tout ou partie des arcs de cercle précédemment définis, qui n'est pas sur la frontière. Enfin, un parcours global de la réunion des arcs de cercle permet de déterminer la frontière extérieure ainsi que la frontière intérieure de l'éventuel trou de l'espace de travail qui contient l'origine.
Accepted:
Published online:
Keywords: Robotics, Workspace, Boundary, Arm, Joints, Biomechanics
Jérôme Bastien 1
@article{CRMECA_2018__346_1_13_0, author = {J\'er\^ome Bastien}, title = {Description analytique compl\`ete des limites de l'espace de travail pour un manipulateur en s\'erie plan}, journal = {Comptes Rendus. M\'ecanique}, pages = {13--25}, publisher = {Elsevier}, volume = {346}, number = {1}, year = {2018}, doi = {10.1016/j.crme.2017.10.004}, language = {fr}, }
Jérôme Bastien. Description analytique complète des limites de l'espace de travail pour un manipulateur en série plan. Comptes Rendus. Mécanique, Volume 346 (2018) no. 1, pp. 13-25. doi : 10.1016/j.crme.2017.10.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.10.004/
[1] Reach envelopes of older adults, Chicago, IL, États-Unis (1998), pp. 166-170
[2] Caractérisation géométrique de la frontière de l'espace de travail d'un système polyarticulé dans le plan, C. R. Mecanique, Volume 335 (2007) no. 3, pp. 181-186 (en français)
[3] A geometrical alternative to jacobian rank deficiency method for planar workspace characterisation, Mech. Mach. Theory, Volume 45 (2010), pp. 335-348
[4] Biomechanics and Motor Control of Human Movement, John Wiley & Sons, New Jersey, Canada, 2009
[5] On the determination of boundaries to manipulator workspaces, Robot. Comput.-Integr. Manuf., Volume 13 (1997) no. 1, pp. 63-72
[6] Geometric representation of the swept volume using jacobian rank-deficiency conditions, Comput. Aided Des., Volume 29 (1997) no. 6, pp. 457-468
[7] Swept volumes: void and boundary identification, Comput. Aided Des., Volume 30 (1998) no. 13, pp. 1009-1018
[8] Towards understanding the workspace of human limbs, Ergonomics, Volume 47 (2004) no. 13, pp. 1386-1405
[9] The singular vector algorithm for the computation of rank-deficiency loci of rectangular Jacobians, Maui, Hawai, États-Unis (2001)
[10] Reach envelope of human extremities, Tsinghua Sci. Technol., Volume 9 (2004) no. 6, pp. 653-666
[11] Interior and exterior boundaries to the workspace of mechanical manipulators, Robot. Comput.-Integr. Manuf., Volume 16 (2000), pp. 365-376
[12] An exhaustive study of the workspace topologies of all 3R orthogonal manipulators with geometric simplifications, Mech. Mach. Theory, Volume 41 (2006) no. 8, pp. 971-986
[13] The determination of nonconvex workspaces of generally constrained planar Stewart platforms, Comput. Math. Appl., Volume 40 (2000) no. 8–9, pp. 1043-1060
[14] Formulation of the workspace equation for wrist-partitioned spatial manipulators, Mech. Mach. Theory, Volume 41 (2006) no. 7, pp. 778-789
[15] A computational geometry approach for determination of boundary of workspaces of planar manipulators with arbitrary topology, Mech. Mach. Theory, Volume 34 (1999), pp. 149-169
[16] Workspaces of planar parallel manipulators, Mech. Mach. Theory, Volume 33 (1998) no. 1–2, pp. 7-20
[17] A geometrical characterization of workspace singularities in 3R manipulators, Advances in Robot Kinematics: Analysis and Design, Springer, New York, 2008, pp. 411-418
[18] Kinematic model for determination of human arm reachable workspace, Meccanica, Volume 40 (2005) no. 2, pp. 203-219
[19] Kinematics, singularity and workspace of planar 5R symmetrical parallel mechanisms, Mech. Mach. Theory, Volume 41 (2006) no. 2, pp. 145-169
[20] Determination of maximal singularity-free zones in the workspace of planar three-degree-of-freedom parallel mechanisms, Mech. Mach. Theory, Volume 41 (2006) no. 10, pp. 1157-1167
[21] Workspace of parallel manipulators with symmetric identical kinematic chains, Mech. Mach. Theory, Volume 41 (2006) no. 6, pp. 632-645
[22] GPU-based real-time 3d workspace generation of arbitrary serial manipulators, ICCAR, Hong Kong (2016)
[23] Analytical determination of the workspace of symmetrical spherical parallel mechanisms, IEEE Trans. Robot., Volume 22 (2006) no. 5, pp. 1011-1017
[24] Kinematic, static and dynamic analysis of a planar 2-DOF tensegrity mechanism, Mech. Mach. Theory, Volume 41 (2006) no. 9, pp. 1072-1089
[25] A complete method for workspace boundary determination on general structure manipulators, IEEE Trans. Robot., Volume 28 (2012) no. 5, pp. 993-1006
[26] Singularities of Robot Mechanisms: Numerical Computation and Avoidance Path Planning, Mechanisms and Machine Science, vol. 41, Springer, Cham, Suisse, 2017
[27] A linear relaxation technique for the position analysis of multiloop linkages, IEEE Trans. Robot., Volume 25 (2009) no. 2, pp. 225-239
[28] A kinematic notation for lower-pair mechanisms based on matrices, J. Appl. Mech., Volume 22 (1955), pp. 215-221
[29] A homogeneous matrix approach to 3d kinematics and dynamics – I. Theory, Mech. Mach. Theory, Volume 31 (1996) no. 5, pp. 573-587
[30] et al. Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand, J. Biomech., Volume 38 (2005) no. 5, pp. 981-992
Cited by Sources:
Comments - Policy