Comptes Rendus
Neural network solution to an inverse problem associated with the eigenvalues of the Stokes operator
Comptes Rendus. Mécanique, Volume 346 (2018) no. 1, pp. 39-47.

A numerical method, based on the design of two artificial neural networks, is presented in order to approximate the viscosity and density features of fluids from the eigenvalues of the Stokes operator. The finite element method is used to solve the direct problem by training a first artificial neural network. A nonlinear map of eigenvalues of the Stokes operator as a function of the viscosity and density of the fluid under study is then obtained. This relationship is later inverted and refined by training a second artificial neural network, solving the aforementioned inverse problem. Numerical examples are presented in order to show the effectiveness and the limitations of this methodology.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.11.006
Mots clés : Artificial neural network, Radial basis function, Viscosity and density coefficients, Inverse problems, Eigenvalues of the Stokes operator, Finite element method
Sebastián Ossandón 1 ; Mauricio Barrientos 1 ; Camilo Reyes 2

1 Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Blanco Viel 596, CerroBarón, Valparaíso, Chile
2 Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O'Higgins, Avenida Viel 1497, Santiago, Chile
@article{CRMECA_2018__346_1_39_0,
     author = {Sebasti\'an Ossand\'on and Mauricio Barrientos and Camilo Reyes},
     title = {Neural network solution to an inverse problem associated with the eigenvalues of the {Stokes} operator},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {39--47},
     publisher = {Elsevier},
     volume = {346},
     number = {1},
     year = {2018},
     doi = {10.1016/j.crme.2017.11.006},
     language = {en},
}
TY  - JOUR
AU  - Sebastián Ossandón
AU  - Mauricio Barrientos
AU  - Camilo Reyes
TI  - Neural network solution to an inverse problem associated with the eigenvalues of the Stokes operator
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 39
EP  - 47
VL  - 346
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2017.11.006
LA  - en
ID  - CRMECA_2018__346_1_39_0
ER  - 
%0 Journal Article
%A Sebastián Ossandón
%A Mauricio Barrientos
%A Camilo Reyes
%T Neural network solution to an inverse problem associated with the eigenvalues of the Stokes operator
%J Comptes Rendus. Mécanique
%D 2018
%P 39-47
%V 346
%N 1
%I Elsevier
%R 10.1016/j.crme.2017.11.006
%G en
%F CRMECA_2018__346_1_39_0
Sebastián Ossandón; Mauricio Barrientos; Camilo Reyes. Neural network solution to an inverse problem associated with the eigenvalues of the Stokes operator. Comptes Rendus. Mécanique, Volume 346 (2018) no. 1, pp. 39-47. doi : 10.1016/j.crme.2017.11.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.11.006/

[1] A.J. Chorin Numerical solution of the Navier–Stokes equations, Math. Comput., Volume 22 (1968), pp. 745-762

[2] F. Thomasset Implementation of Finite Element Methods for Navier–Stokes Equations, Springer-Verlag, Berlin, 1981

[3] T.J.R. Hughes The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, Mineola, NY, USA, 2000

[4] Y. Bazilevs; V.M. Calo; J.A. Cottrell; T.J.R. Hughes; A. Reali; G. Scovazzi Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng., Volume 197 (2007), pp. 173-201

[5] B. Mercier; J. Osborn; J. Rappaz; P.A. Raviart Eigenvalue approximation by mixed and hybrid methods, Math. Comput., Volume 36 (1981), pp. 427-453

[6] A. Golbabai A mesh free method based on radial basis functions for the eigenvalues of transient Stokes equations, Eng. Anal. Bound. Elem., Volume 36 (2012), pp. 1555-1559

[7] t. Wieners A numerical existence proof of nodal lines for the first eigenfunction of the plate equation, Arch. Math., Volume 66 (1996), pp. 420-427

[8] E. Leriche Are there localized eddies in the trihedral corners of the Stokes eigenmodes in cubical cavity?, Comput. Fluids, Volume 43 (2011), pp. 98-101

[9] M. Baymani; S. Effati; A. Kerayechian A feed-forward neural network for solving Stokes problem, Acta Appl. Math., Volume 116 (2011), pp. 55-64

[10] M. Baymani; S. Effati; H. Niazmand; A. Kerayechian Artificial neural network method for solving the Navier–Stokes equations, Neural Comput. Appl., Volume 26 (2015), pp. 765-773

[11] F. Girosi; M. Jones; T. Poggio Regularization theory and neural networks architectures, J. Neural Comput., Volume 7 (1995), pp. 219-269

[12] S. Ossandón; C. Reyes On the neural network calculation of the Lamé coefficients through eigenvalues of the elasticity operator, C. R. Mecanique, Volume 344 (2016), pp. 113-118

[13] S. Ossandón; C. Reyes; C.M. Reyes Neural network solution of an inverse problem associated with the Dirichlet eigenvalues of the anisotropic Laplace operator, Comput. Math. Appl., Volume 72 (2016), pp. 1153-1163

[14] S. Ossandón; C. Reyes; P. Cumsille; C.M. Reyes Neural network approach for the calculation of potential coefficients in quantum mechanics, Comput. Phys. Commun., Volume 214 (2017), pp. 31-38

[15] R.J. Schilling; J.J. Carroll; A.F. Al-Ajlouni Approximation of nonlinear systems with radial basis function neural networks, IEEE Trans. Neural Netw., Volume 12 (2001) no. 1, pp. 1-15

[16] I. Babuska; J. Osborn Eigenvalue problems (P.G. Ciarlet; J.-L. Lions, eds.), Handbook of Numerical Analysis, vol. II: Finite Element Methods (Part 1), North-Holland, Amsterdam, 1991

[17] D. Boffi; F. Brezzi; M. Fortin Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg, 2013

[18] F. Brezzi; M. Fortin Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, 1991

[19] V. Girault; P.A. Raviart Finite Element Methods for Navier–Stokes Equations, Springer Verlag, 1986

[20] S. Jia; H. Xie; X. Yin Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods, Appl. Math. Czech., Volume 54 (2009), pp. 1-15

[21] X. Yin; H. Xie; S. Jia Asymptotic expansions and extrapolations of eigenvalues for the Stokes problem by mixed finite element methods, J. Comput. Appl. Math., Volume 215 (2008), pp. 127-141

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

On the neural network calculation of the Lamé coefficients through eigenvalues of the elasticity operator

Sebastián Ossandón; Camilo Reyes

C. R. Méca (2016)