Comptes Rendus
Blow-up of solutions to a quasilinear wave equation for high initial energy
Comptes Rendus. Mécanique, Volume 346 (2018) no. 5, pp. 402-407.

This paper deals with blow-up solutions to a nonlinear hyperbolic equation with variable exponent of nonlinearities. By constructing a new control function and using energy inequalities, the authors obtain the lower bound estimate of the L2 norm of the solution. Furthermore, the concavity arguments are used to prove the nonexistence of solutions; at the same time, an estimate of the upper bound of blow-up time is also obtained. This result extends and improves those of [1,2].

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.03.002
Keywords: Viscoelastic hyperbolic equation, Energy estimate method, High initial energy

Fang Li 1; Fang Liu 2

1 School of Mathematics, Jilin University, Changchun 130012, PR China
2 School of Basic Sciences, Changchun University of Technology, Changchun 130012, PR China
@article{CRMECA_2018__346_5_402_0,
     author = {Fang Li and Fang Liu},
     title = {Blow-up of solutions to a quasilinear wave equation for high initial energy},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {402--407},
     publisher = {Elsevier},
     volume = {346},
     number = {5},
     year = {2018},
     doi = {10.1016/j.crme.2018.03.002},
     language = {en},
}
TY  - JOUR
AU  - Fang Li
AU  - Fang Liu
TI  - Blow-up of solutions to a quasilinear wave equation for high initial energy
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 402
EP  - 407
VL  - 346
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crme.2018.03.002
LA  - en
ID  - CRMECA_2018__346_5_402_0
ER  - 
%0 Journal Article
%A Fang Li
%A Fang Liu
%T Blow-up of solutions to a quasilinear wave equation for high initial energy
%J Comptes Rendus. Mécanique
%D 2018
%P 402-407
%V 346
%N 5
%I Elsevier
%R 10.1016/j.crme.2018.03.002
%G en
%F CRMECA_2018__346_5_402_0
Fang Li; Fang Liu. Blow-up of solutions to a quasilinear wave equation for high initial energy. Comptes Rendus. Mécanique, Volume 346 (2018) no. 5, pp. 402-407. doi : 10.1016/j.crme.2018.03.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.03.002/

[1] S.N. Antontsev Wave equation with p(x,t)-Laplacian and damping: blow-up of solutions, C. R. Mecanique, Volume 339 (2011), pp. 751-755

[2] B. Guo; W.J. Gao Blow-up of solutions to quasilinear hyperbolic equations with p(x,t)-Laplacian and positive initial energy, C. R. Mecanique, Volume 342 (2014), pp. 513-519

[3] E. Acerbi; G. Mingione Regularity results for stationary eletrorheological fluids, Arch. Ration. Mech. Anal., Volume 164 (2002), pp. 213-259

[4] L. Diening; P. Harjulehto; P. Hästö; M. Rûžička Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, Germany, 2011

[5] M. Ruzicka Electrorheological Fluids: Modelling and Mathematical Theory, Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000

[6] D.H. Sattinger On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., Volume 30 (1968), pp. 148-172

[7] H.A. Levine Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt=Au+F(u), Trans. Amer. Math. Soc., Volume 192 (1974), pp. 1-21

[8] V. Georgiev; G. Todorova Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equ., Volume 109 (1994), pp. 295-308

[9] H.T. Song; D.S. Xue Blow-up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal., Volume 109 (2014), pp. 245-251

[10] L.L. Sun; B. Guo; W.J. Gao A lower bound for the blow-up time to a damped semilinear wave equation, Appl. Math. Lett., Volume 37 (2014), pp. 22-25

[11] B. Guo; F. Liu A lower bound for the blow-up time to a viscoelastic hyperbolic equation with nonlinear sources, Appl. Math. Lett., Volume 60 (2016), pp. 115-119

[12] Z. Yang Existence and asymptotic behaviour of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci., Volume 25 (2002) no. 10, pp. 795-814

[13] S.A. Messaoudi On the decay of solutions for a class of quasilinear hyperbolic equations with non-linear damping and source terms, Math. Methods Appl. Sci., Volume 28 (2005) no. 15, pp. 1819-1828

[14] M.A. Rammaha; D. Toundykov Weak solutions and blow-up for wave equations of p-Laplacian type with supercritical sources, J. Math. Phys., Volume 6 (2015) no. 8 (pp. 1–30)

[15] S.N. Antontsev Wave equation with p(x,t)-Laplacian and damping term: existence and blow-up, Differ. Equ. Appl., Volume 3 (2011) no. 4, pp. 503-525

[16] B. Guo An inverse Hölder inequality and its application in lower bound estimates for blow-up time, C. R. Mecanique, Volume 345 (2017), pp. 370-377

[17] S.A. Messaoudi; A.A. Talahmeh A blow-up result for a nonlinear wave equation with variable exponent nonlinearities, Appl. Anal., Volume 96 (2017) no. 9, pp. 1509-1515

[18] S.A. Messaoudi; A.A. Talahmeh Blowup solutions of a quasilinear wave equation with variable exponent nonlinearities, Math. Methods Appl. Sci., Volume 40 (2017), pp. 6976-6986

Cited by Sources:

Comments - Policy