Comptes Rendus
Model reduction, data-based and advanced discretization in computational mechanics
Computing singular solutions to partial differential equations by Taylor series
Comptes Rendus. Mécanique, Volume 346 (2018) no. 7, pp. 603-614.

The Taylor Meshless Method (TMM) is a true meshless integration-free numerical method for solving elliptic Partial Differential Equations (PDEs). The basic idea of this method is to use high-order polynomial shape functions that are approximated solutions to the PDE and are computed by the technique of Taylor series. Currently, this new method has proved robust and efficient, and it has the property of exponential convergence with the degree, when solving problems with smooth solutions. This exponential convergence is no longer obtained for problems involving cracks, corners or notches. On the basis of numerical tests, this paper establishes that the presence of a singularity leads to a worsened convergence of the Taylor series, but highly accurate solutions can be recovered by including a few singular solutions in the basis of shape functions.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.04.003
Keywords: Taylor series, Meshless, Singular shape functions, Angular domain

Jie Yang 1, 2; Heng Hu 1; Michel Potier-Ferry 2

1 School of Civil Engineering, Wuhan University, 8 South Road of East Lake, Wuchang, 430072 Wuhan, PR China
2 Laboratoire d'étude des microstructures et de mécanique des matériaux, LEM3, UMR CNRS 7239, Université de Lorraine, île du Saulcy, 57045 Metz cedex 01, France
@article{CRMECA_2018__346_7_603_0,
     author = {Jie Yang and Heng Hu and Michel Potier-Ferry},
     title = {Computing singular solutions to partial differential equations by {Taylor} series},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {603--614},
     publisher = {Elsevier},
     volume = {346},
     number = {7},
     year = {2018},
     doi = {10.1016/j.crme.2018.04.003},
     language = {en},
}
TY  - JOUR
AU  - Jie Yang
AU  - Heng Hu
AU  - Michel Potier-Ferry
TI  - Computing singular solutions to partial differential equations by Taylor series
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 603
EP  - 614
VL  - 346
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2018.04.003
LA  - en
ID  - CRMECA_2018__346_7_603_0
ER  - 
%0 Journal Article
%A Jie Yang
%A Heng Hu
%A Michel Potier-Ferry
%T Computing singular solutions to partial differential equations by Taylor series
%J Comptes Rendus. Mécanique
%D 2018
%P 603-614
%V 346
%N 7
%I Elsevier
%R 10.1016/j.crme.2018.04.003
%G en
%F CRMECA_2018__346_7_603_0
Jie Yang; Heng Hu; Michel Potier-Ferry. Computing singular solutions to partial differential equations by Taylor series. Comptes Rendus. Mécanique, Volume 346 (2018) no. 7, pp. 603-614. doi : 10.1016/j.crme.2018.04.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.04.003/

[1] Y. Tampango; M. Potier-Ferry; Y. Koutsawa; S. Belouettar Convergence analysis and detection of singularities within a boundary meshless method based on Taylor series, Eng. Anal. Bound. Elem., Volume 36 (2012) no. 10, pp. 1465-1472

[2] J. Yang; H. Hu; M. Potier-Ferry Solving large scale problems by Taylor Meshless Method, Int. J. Numer. Methods Eng., Volume 112 (2017), pp. 103-124

[3] J. Jirousek; P. Teodorescu Large finite elements method for the solution of problems in the theory of elasticity, Comput. Struct., Volume 15 (1982), pp. 575-587

[4] J. Jirousek; P. Teodorescu Hybrid-Trefftz plate bending elements with p-method capabilities, Int. J. Numer. Methods Eng., Volume 24 (1987), pp. 1367-1393

[5] E. Kita; N. Kamiya Trefftz method: an overview, Adv. Eng. Softw., Volume 24 (1995), pp. 3-12

[6] D.S. Zézé; M. Potier-Ferry; N. Damil A boundary meshless method with shape functions computed from the PDE, Eng. Anal. Bound. Elem., Volume 34 (2010) no. 8, pp. 747-754

[7] J. Yang; H. Hu; Y. Koutsawa; M. Potier-Ferry Taylor meshless method for solving non-linear partial differential equations, J. Comput. Phys., Volume 348 (2017), pp. 385-400

[8] Y. Tampango; M. Potier-Ferry; Y. Koutsawa; S. Tiem Coupling of polynomial approximations with application to a boundary meshless method, Int. J. Numer. Methods Eng., Volume 95 (2013) no. 13, pp. 1094-1112

[9] H. Liebowitz; E.T. Moyer Finite element methods in fracture mechanics, Comput. Struct., Volume 31 (1989), pp. 1-9

[10] T. Belytschko; R. Gracie; G. Ventura A review of extended/generalized finite element methods for material modeling, Model. Simul. Mater. Sci. Eng., Volume 17 (2009)

[11] W.K. Wilson Combined Mode Fracture Mechanics, University of Pittsburgh, 1969 (Ph.D. thesis)

[12] D.M. Tracey Finite elements for determination of crack tip elastic stress intensity factors, Eng. Fract. Mech., Volume 8 (1971), pp. 255-265

[13] S.E. Benzley Representation of singularities with isoparametric finite elements, Int. J. Numer. Methods Eng., Volume 8 (1974), pp. 131-150

[14] J.M. Melenk; I. Babuška The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Math., Volume 139 (1996), pp. 289-314

[15] N. Moës; J. Dolbow; T. Belytschko A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., Volume 46 (1999), pp. 131-150

[16] Z.C. Li Combined Methods for Elliptic Equations with Singularities, Interfaces and Infinities, Kluwer Academic Publishers, Dordrecht, 1998

[17] Z.C. Li; T.T. Lu; H.T. Huang; A.H.D. Cheng Trefftz, collocation, and other boundary methods: a comparison, Numer. Methods Partial Differ. Equ., Volume 23 (2007), pp. 93-144

[18] G. Fairweather; A. Karageorghis The method of fundamental solutions for elliptic boundary value problems, Adv. Comput. Math., Volume 9 (1998) no. 1–2, pp. 69-95

[19] X. Zhang; X.H. Liu; K.Z. Song; M.W. Lu Least-squares collocation meshless method, Int. J. Numer. Methods Eng., Volume 51 (2001) no. 9, pp. 1089-1100

[20] P. Grisvard Elliptic Problems in Nonsmooth Domains, Pitman, Marshfield, 1985

[21] M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions, Springer, Berlin, Heidelberg, 1988

[22] F. Hecht New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3, pp. 251-265

[23] M. Costabel; M. Dauge; Z. Yosibash A quasi-dual function method for extracting edge stress intensity functions, SIAM J. Math. Anal., Volume 35 (2004), pp. 1177-1202

[24] J.M. Muller; N. Brisebarre; F. de Dinechin; C.-P. Jeannerod; V. Lefèvre; G. Melquiond; N. Revol; D. Stehlé; S. Torres Handbook of Floating-Point Arithmetic, Springer, Dordrecht, 2010

[25] E.J. Kansa; P. Holoborodko On the ill-conditioned nature of C RBF strong collocation, Eng. Anal. Bound. Elem., Volume 78 (2017), pp. 26-30

[26] G.C. Sih On the Westergaard method of crack analysis, Int. J. Fract., Volume 2 (1966) no. 4, pp. 628-631

[27] N.I. Muskhelishvili Some Basic Problems of the Mathematical Theory of Elasticity, Springer Netherlands, 1977

Cited by Sources:

Comments - Policy