Comptes Rendus
Model reduction, data-based and advanced discretization in computational mechanics
Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach
Comptes Rendus. Mécanique, Model reduction, data-based and advanced discretization in computational mechanics / Réduction de modèles, données et techniques de discrétisation avancées en mécanique numérique, Volume 346 (2018) no. 7, pp. 590-602.

This paper is concerned with the solution to structural dynamics equations. The technique here presented is closely related to Harmonic Analysis, and therefore it is only concerned with the long-term forced response. Proper Generalized Decomposition (PGD) is used to compute space-frequency separated representations by considering the frequency as an extra coordinate. This formulation constitutes an alternative to classical methods such as Modal Analysis and it is especially advantageous when parametrized structural dynamics equations are of interest. In such case, there is no need to solve the parametrized eigenvalue problem and the space-time solution can be recovered with a Fourier inverse transform. The PGD solution is valid for any forcing term that can be written as a combination of the considered frequencies. Finally, the solution is available for any value of the parameter. When the problem involves frequency-dependent parameters the proposed technique provides a specially suitable method that becomes computationally more efficient when it is combined with a modal representation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.04.005
Mots-clés : Proper Generalized Decomposition, Frequency-dependent parametric models, Harmonic analysis, Modal analysis, Dynamics

Muhammad Haris Malik 1 ; Domenico Borzacchiello 2 ; Jose Vicente Aguado 2 ; Francisco Chinesta 3

1 Department of Mechanical Engineering, DHA Suffa University Off Khayaban-e-Tufail, Phase VII(Ext) DHA, Karachi-75500, Pakistan
2 ICI – Institut de calcul intensif & ESI GROUP Chair, École centrale de Nantes, 1, rue de la Noë, 44300 Nantes, France
3 PIMM Laboratory & ESI GROUP Chair, ENSAM ParisTech, 151, boulevard de l'Hôpital, 75013 Paris, France
@article{CRMECA_2018__346_7_590_0,
     author = {Muhammad Haris Malik and Domenico Borzacchiello and Jose Vicente Aguado and Francisco Chinesta},
     title = {Advanced parametric space-frequency separated representations in structural dynamics: {A} harmonic{\textendash}modal hybrid approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {590--602},
     publisher = {Elsevier},
     volume = {346},
     number = {7},
     year = {2018},
     doi = {10.1016/j.crme.2018.04.005},
     language = {en},
}
TY  - JOUR
AU  - Muhammad Haris Malik
AU  - Domenico Borzacchiello
AU  - Jose Vicente Aguado
AU  - Francisco Chinesta
TI  - Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 590
EP  - 602
VL  - 346
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2018.04.005
LA  - en
ID  - CRMECA_2018__346_7_590_0
ER  - 
%0 Journal Article
%A Muhammad Haris Malik
%A Domenico Borzacchiello
%A Jose Vicente Aguado
%A Francisco Chinesta
%T Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach
%J Comptes Rendus. Mécanique
%D 2018
%P 590-602
%V 346
%N 7
%I Elsevier
%R 10.1016/j.crme.2018.04.005
%G en
%F CRMECA_2018__346_7_590_0
Muhammad Haris Malik; Domenico Borzacchiello; Jose Vicente Aguado; Francisco Chinesta. Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach. Comptes Rendus. Mécanique, Model reduction, data-based and advanced discretization in computational mechanics / Réduction de modèles, données et techniques de discrétisation avancées en mécanique numérique, Volume 346 (2018) no. 7, pp. 590-602. doi : 10.1016/j.crme.2018.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.04.005/

[1] R.W. Clough; J. Penzien Dynamics of Structures, Civil Engineering Series, McGraw-Hill, New York, 1993

[2] S. Quraishi; C. Schroder; V. Mehrmann Solution of large scale parametric eigenvalue problems arising from brake squeal modeling, Proc. Appl. Math. Mech., Volume 14 (2014), pp. 891-892

[3] F. Tisseur; K. Meerbergen The quadratic eigenvalue problem, SIAM Rev., Volume 43 (2001) no. 2, pp. 235-286

[4] F.T. Hadjiioannou; T.A. Apostolatos; N.V. Sarlis Sarlis stochastic parametric amplification due to higher order correlations: a perturbative approach to non-Abelian effects in time ordering, Phys. Rev. E, Volume 74 (2006) no. 051118 (published 21 November 2006)

[5] M. Domaneschi; L. Martinelli Refined optimal passive control of buffeting-induced wind loading of a suspension bridge, Wind Struct., Volume 18 (2014), pp. 1-20 | DOI

[6] F. Chinesta; P. Ladeveze; E. Cueto A short review on model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng., Volume 18 (2011) no. 4, pp. 395-404

[7] F. Chinesta; A. Ammar; E. Cueto Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models, Arch. Comput. Methods Eng., Volume 17 (2010) no. 4, pp. 327-350

[8] F. Chinesta; A. Leygue; F. Bordeu; J.V. Aguado; E. Cueto; D. Gonzalez; I. Alfaro; A. Ammar; A. Huerta Parametric PGD based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., Volume 20 (2013) no. 1, pp. 31-59

[9] F. Chinesta; R. Keunings; A. Leygue The Proper Generalized Decomposition for Advanced Numerical Simulations, A Primer Springerbriefs, Springer, 2014

[10] D. Borzacchiello; J.V. Aguado; F. Chinesta Reduced order modelling for efficient numerical optimisation of a hot-wall chemical vapour deposition reactor, Int. J. Numer. Methods Heat Fluid Flow, Volume 27 (2017) no. 7, pp. 1602-1622

[11] A. Pecker Dynamique des Sols, Presses de L'École Nationale des Ponts et Chaussées, Paris, 1984

[12] S.H. Crandall The role of damping in vibration theory, J. Sound Vib., Volume 11 (1970) no. 1, pp. 3-18

[13] L. Boucinha; A. Ammar; A. Gravouil; A. Nouy Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models – application to transient elastodynamics in space-time domain, Comput. Methods Appl. Mech. Eng., Volume 273 (2014), pp. 56-76

[14] A. Barbarulo; H. Riou; L. Kovalevsky; P. Ladeveze PGD-VTCR: a reduced order model technique to solve medium frequency broad band problems on complex acoustical systems, J. Mech. Eng., Volume 60 (2014) no. 5, pp. 307-314

[15] J.V. Aguado; A. Huerta; F. Chinesta; E. Cueto Real-time monitoring of thermal processes by reduced order modelling, Int. J. Numer. Methods Eng., Volume 102 (2015) no. 5, pp. 991-1017

[16] C. Germoso; J.V. Aguado; A. Fraile; E. Alarcon; F. Chinesta Efficient PGD-based dynamic calculation of non-linear soil behavior, C. R. Mecanique, Volume 344 (2016), pp. 24-41

[17] S. Gregory; M. Tur; E. Nadal; J.V. Aguado; F.J. Fuenmayor; F. Chinesta Fast simulation of the pantograph-catenary dynamic interaction, Finite Elem. Anal. Des., Volume 129 (2017), pp. 1-13

[18] F. Chinesta; A. Ammar; A. Leygue; R. Keunings An overview of the proper generalized decomposition with applications in computational rheology, J. Non-Newton. Fluid Mech., Volume 166 (2011) no. 11, pp. 578-592

[19] F. Chinesta; A. Leygue; F. Bordeu; J.V. Aguado; E. Cueto; D. Gonzalez; I. Alfaro; A. Ammar; A. Huerta PGD-based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., Volume 20 (2013) no. 1, pp. 31-59

[20] M. Barrault; Y. Maday; N.C. Nguyen; A.T. Patera An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 9, pp. 667-672 | DOI

[21] S. Chaturantabut; D.C. Sorensen Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., Volume 32 (2010) no. 5, pp. 2737-2764

[22] M.H. Malik; D. Borzacchiello; F. Chinesta; P. Diez Inclusion of frequency-dependent parameters in power transmission lines simulation using harmonic analysis and proper generalized decomposition, Int. J. Numer. Model. (2018) | DOI

  • Clément Vella; Pierre Gosselet; Serge Prudhomme An efficient PGD solver for structural dynamics applications, Advanced Modeling and Simulation in Engineering Sciences, Volume 11 (2024) no. 1 | DOI:10.1186/s40323-024-00269-z
  • Guilherme Viana; Guillaume Puel; Ludovic Chamoin; Andrea Barbarulo Implementation and analysis of viscoelastic damping in a 2D + 1D model of railway track vibrations, Mechanical Systems and Signal Processing, Volume 208 (2024), p. 110926 | DOI:10.1016/j.ymssp.2023.110926
  • F. Cavaliere; S. Zlotnik; R. Sevilla; X. Larrayoz; P. Díez Nonintrusive parametric NVH study of a vehicle body structure, Mechanics Based Design of Structures and Machines, Volume 51 (2023) no. 11, p. 6557 | DOI:10.1080/15397734.2022.2098140
  • A. Daby-Seesaram; A. Fau; P.-É. Charbonnel; D. Néron A hybrid frequency-temporal reduced-order method for nonlinear dynamics, Nonlinear Dynamics, Volume 111 (2023) no. 15, p. 13669 | DOI:10.1007/s11071-023-08513-8
  • F. Cavaliere; S. Zlotnik; R. Sevilla; X. Larrayoz; P. Díez Nonintrusive parametric solutions in structural dynamics, Computer Methods in Applied Mechanics and Engineering, Volume 389 (2022), p. 114336 | DOI:10.1016/j.cma.2021.114336
  • Clément Vella; Serge Prudhomme PGD reduced-order modeling for structural dynamics applications, Computer Methods in Applied Mechanics and Engineering, Volume 402 (2022), p. 115736 | DOI:10.1016/j.cma.2022.115736
  • Tarek Frahi; Antonio Falco; Baptiste Vinh Mau; Jean Louis Duval; Francisco Chinesta Empowering Advanced Parametric Modes Clustering from Topological Data Analysis, Applied Sciences, Volume 11 (2021) no. 14, p. 6554 | DOI:10.3390/app11146554
  • María Infantes; Philippe Vidal; Rafael Castro-Triguero; Laurent Gallimard; Enrique García-Macías; Olivier Polit Forced vibration analysis of composite beams based on the variable separation method, Mechanics of Advanced Materials and Structures, Volume 28 (2021) no. 6, p. 618 | DOI:10.1080/15376494.2019.1578015
  • Claudia Germoso; Jean Louis Duval; Francisco Chinesta Harmonic-Modal Hybrid Reduced Order Model for the Efficient Integration of Non-Linear Soil Dynamics, Applied Sciences, Volume 10 (2020) no. 19, p. 6778 | DOI:10.3390/app10196778
  • Ramzi Othman; Amine Ammar; Khalid H. Almitani Reduced modelling computation of layered soil's harmonic green functions, Finite Elements in Analysis and Design, Volume 177 (2020), p. 103419 | DOI:10.1016/j.finel.2020.103419
  • Santiago Montagud; José Vicente Aguado; Francisco Chinesta; Pierre Joyot Parametric inverse impulse response based on reduced order modeling and randomized excitations, Mechanical Systems and Signal Processing, Volume 135 (2020), p. 106392 | DOI:10.1016/j.ymssp.2019.106392

Cité par 11 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: