Comptes Rendus
Model reduction, data-based and advanced discretization in computational mechanics
Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach
Comptes Rendus. Mécanique, Volume 346 (2018) no. 7, pp. 590-602.

This paper is concerned with the solution to structural dynamics equations. The technique here presented is closely related to Harmonic Analysis, and therefore it is only concerned with the long-term forced response. Proper Generalized Decomposition (PGD) is used to compute space-frequency separated representations by considering the frequency as an extra coordinate. This formulation constitutes an alternative to classical methods such as Modal Analysis and it is especially advantageous when parametrized structural dynamics equations are of interest. In such case, there is no need to solve the parametrized eigenvalue problem and the space-time solution can be recovered with a Fourier inverse transform. The PGD solution is valid for any forcing term that can be written as a combination of the considered frequencies. Finally, the solution is available for any value of the parameter. When the problem involves frequency-dependent parameters the proposed technique provides a specially suitable method that becomes computationally more efficient when it is combined with a modal representation.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.04.005
Keywords: Proper Generalized Decomposition, Frequency-dependent parametric models, Harmonic analysis, Modal analysis, Dynamics

Muhammad Haris Malik 1; Domenico Borzacchiello 2; Jose Vicente Aguado 2; Francisco Chinesta 3

1 Department of Mechanical Engineering, DHA Suffa University Off Khayaban-e-Tufail, Phase VII(Ext) DHA, Karachi-75500, Pakistan
2 ICI – Institut de calcul intensif & ESI GROUP Chair, École centrale de Nantes, 1, rue de la Noë, 44300 Nantes, France
3 PIMM Laboratory & ESI GROUP Chair, ENSAM ParisTech, 151, boulevard de l'Hôpital, 75013 Paris, France
@article{CRMECA_2018__346_7_590_0,
     author = {Muhammad Haris Malik and Domenico Borzacchiello and Jose Vicente Aguado and Francisco Chinesta},
     title = {Advanced parametric space-frequency separated representations in structural dynamics: {A} harmonic{\textendash}modal hybrid approach},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {590--602},
     publisher = {Elsevier},
     volume = {346},
     number = {7},
     year = {2018},
     doi = {10.1016/j.crme.2018.04.005},
     language = {en},
}
TY  - JOUR
AU  - Muhammad Haris Malik
AU  - Domenico Borzacchiello
AU  - Jose Vicente Aguado
AU  - Francisco Chinesta
TI  - Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 590
EP  - 602
VL  - 346
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crme.2018.04.005
LA  - en
ID  - CRMECA_2018__346_7_590_0
ER  - 
%0 Journal Article
%A Muhammad Haris Malik
%A Domenico Borzacchiello
%A Jose Vicente Aguado
%A Francisco Chinesta
%T Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach
%J Comptes Rendus. Mécanique
%D 2018
%P 590-602
%V 346
%N 7
%I Elsevier
%R 10.1016/j.crme.2018.04.005
%G en
%F CRMECA_2018__346_7_590_0
Muhammad Haris Malik; Domenico Borzacchiello; Jose Vicente Aguado; Francisco Chinesta. Advanced parametric space-frequency separated representations in structural dynamics: A harmonic–modal hybrid approach. Comptes Rendus. Mécanique, Volume 346 (2018) no. 7, pp. 590-602. doi : 10.1016/j.crme.2018.04.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.04.005/

[1] R.W. Clough; J. Penzien Dynamics of Structures, Civil Engineering Series, McGraw-Hill, New York, 1993

[2] S. Quraishi; C. Schroder; V. Mehrmann Solution of large scale parametric eigenvalue problems arising from brake squeal modeling, Proc. Appl. Math. Mech., Volume 14 (2014), pp. 891-892

[3] F. Tisseur; K. Meerbergen The quadratic eigenvalue problem, SIAM Rev., Volume 43 (2001) no. 2, pp. 235-286

[4] F.T. Hadjiioannou; T.A. Apostolatos; N.V. Sarlis Sarlis stochastic parametric amplification due to higher order correlations: a perturbative approach to non-Abelian effects in time ordering, Phys. Rev. E, Volume 74 (2006) no. 051118 (published 21 November 2006)

[5] M. Domaneschi; L. Martinelli Refined optimal passive control of buffeting-induced wind loading of a suspension bridge, Wind Struct., Volume 18 (2014), pp. 1-20 | DOI

[6] F. Chinesta; P. Ladeveze; E. Cueto A short review on model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng., Volume 18 (2011) no. 4, pp. 395-404

[7] F. Chinesta; A. Ammar; E. Cueto Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models, Arch. Comput. Methods Eng., Volume 17 (2010) no. 4, pp. 327-350

[8] F. Chinesta; A. Leygue; F. Bordeu; J.V. Aguado; E. Cueto; D. Gonzalez; I. Alfaro; A. Ammar; A. Huerta Parametric PGD based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., Volume 20 (2013) no. 1, pp. 31-59

[9] F. Chinesta; R. Keunings; A. Leygue The Proper Generalized Decomposition for Advanced Numerical Simulations, A Primer Springerbriefs, Springer, 2014

[10] D. Borzacchiello; J.V. Aguado; F. Chinesta Reduced order modelling for efficient numerical optimisation of a hot-wall chemical vapour deposition reactor, Int. J. Numer. Methods Heat Fluid Flow, Volume 27 (2017) no. 7, pp. 1602-1622

[11] A. Pecker Dynamique des Sols, Presses de L'École Nationale des Ponts et Chaussées, Paris, 1984

[12] S.H. Crandall The role of damping in vibration theory, J. Sound Vib., Volume 11 (1970) no. 1, pp. 3-18

[13] L. Boucinha; A. Ammar; A. Gravouil; A. Nouy Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models – application to transient elastodynamics in space-time domain, Comput. Methods Appl. Mech. Eng., Volume 273 (2014), pp. 56-76

[14] A. Barbarulo; H. Riou; L. Kovalevsky; P. Ladeveze PGD-VTCR: a reduced order model technique to solve medium frequency broad band problems on complex acoustical systems, J. Mech. Eng., Volume 60 (2014) no. 5, pp. 307-314

[15] J.V. Aguado; A. Huerta; F. Chinesta; E. Cueto Real-time monitoring of thermal processes by reduced order modelling, Int. J. Numer. Methods Eng., Volume 102 (2015) no. 5, pp. 991-1017

[16] C. Germoso; J.V. Aguado; A. Fraile; E. Alarcon; F. Chinesta Efficient PGD-based dynamic calculation of non-linear soil behavior, C. R. Mecanique, Volume 344 (2016), pp. 24-41

[17] S. Gregory; M. Tur; E. Nadal; J.V. Aguado; F.J. Fuenmayor; F. Chinesta Fast simulation of the pantograph-catenary dynamic interaction, Finite Elem. Anal. Des., Volume 129 (2017), pp. 1-13

[18] F. Chinesta; A. Ammar; A. Leygue; R. Keunings An overview of the proper generalized decomposition with applications in computational rheology, J. Non-Newton. Fluid Mech., Volume 166 (2011) no. 11, pp. 578-592

[19] F. Chinesta; A. Leygue; F. Bordeu; J.V. Aguado; E. Cueto; D. Gonzalez; I. Alfaro; A. Ammar; A. Huerta PGD-based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., Volume 20 (2013) no. 1, pp. 31-59

[20] M. Barrault; Y. Maday; N.C. Nguyen; A.T. Patera An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 9, pp. 667-672 | DOI

[21] S. Chaturantabut; D.C. Sorensen Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., Volume 32 (2010) no. 5, pp. 2737-2764

[22] M.H. Malik; D. Borzacchiello; F. Chinesta; P. Diez Inclusion of frequency-dependent parameters in power transmission lines simulation using harmonic analysis and proper generalized decomposition, Int. J. Numer. Model. (2018) | DOI

Cited by Sources:

Comments - Policy