Comptes Rendus
The effects of the rock bridge ligament angle and the confinement on crack coalescence in rock bridges: An experimental study and discrete element method
Comptes Rendus. Mécanique, Volume 347 (2019) no. 6, pp. 490-503.

The present article investigates the influences of the rock bridge ligament angle, β, and the confinement on crack coalescence patterns by conducting laboratory and numerical tests on rock-like specimens. Laboratory tests show that no coalescence in the rock bridge occurred for low β. With an increase of β, tensile-shear coalescence and tensile coalescences subsequently occurred. In addition, the increase in the confinement first promoted shear coalescence and then restrained crack coalescence for low β, whereas the tensile coalescence was restrained by the increase in confinement for high β. The numerical results corroborate the laboratory tests in the coalescence patterns. In addition, the numerical study shows that tensile and shear cracks subsequently initiated near crack tips because of the concentrated tensile and shear stresses, respectively. Regarding the influence of β on crack coalescence, tensile or shear stress failed to concentrate in rock bridges for low β. Therefore, the cracks failed to coalesce, whereas with the increase in β, tensile and shear stress concentrations occurred in the bridge and led to either tensile shear or tensile coalescence. Regarding the influence of confinement on crack coalescence, the increase in confinement restrained the tensile stress concentrations and further hindered tensile crack coalescence in rock bridges for high values of β.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.12.006
Mots clés : Crack coalescence, Stress concentrations, Tensile crack, Shear crack
Wen Wan 1 ; Jie Liu 1 ; Yanlin Zhao 1 ; Xiang Fan 2

1 School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan, China
2 School of Highway, Chang'an University, Xi An, China
@article{CRMECA_2019__347_6_490_0,
     author = {Wen Wan and Jie Liu and Yanlin Zhao and Xiang Fan},
     title = {The effects of the rock bridge ligament angle and the confinement on crack coalescence in rock bridges: {An} experimental study and discrete element method},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {490--503},
     publisher = {Elsevier},
     volume = {347},
     number = {6},
     year = {2019},
     doi = {10.1016/j.crme.2018.12.006},
     language = {en},
}
TY  - JOUR
AU  - Wen Wan
AU  - Jie Liu
AU  - Yanlin Zhao
AU  - Xiang Fan
TI  - The effects of the rock bridge ligament angle and the confinement on crack coalescence in rock bridges: An experimental study and discrete element method
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 490
EP  - 503
VL  - 347
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2018.12.006
LA  - en
ID  - CRMECA_2019__347_6_490_0
ER  - 
%0 Journal Article
%A Wen Wan
%A Jie Liu
%A Yanlin Zhao
%A Xiang Fan
%T The effects of the rock bridge ligament angle and the confinement on crack coalescence in rock bridges: An experimental study and discrete element method
%J Comptes Rendus. Mécanique
%D 2019
%P 490-503
%V 347
%N 6
%I Elsevier
%R 10.1016/j.crme.2018.12.006
%G en
%F CRMECA_2019__347_6_490_0
Wen Wan; Jie Liu; Yanlin Zhao; Xiang Fan. The effects of the rock bridge ligament angle and the confinement on crack coalescence in rock bridges: An experimental study and discrete element method. Comptes Rendus. Mécanique, Volume 347 (2019) no. 6, pp. 490-503. doi : 10.1016/j.crme.2018.12.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.12.006/

[1] J. Jin; P. Cao; Y. Chen; C.Z. Pu; D.W. Mao; X. Fan Influence of single flaw on the failure process and energy mechanics of rock-like material, Comput. Geotech., Volume 86 (2017), pp. 150-162

[2] Y.L. Zhao; Y.X. Wang; W.J. Wang; L.M. Tang; Q. Liu; G. Cheng Modeling of rheological fracture behavior of rock cracks subjected to hydraulic pressure and far field stresses, Theor. Appl. Fract. Mech., Volume 101 (2019), pp. 59-66

[3] P. Feng; F. Dai; Y. Liu; N.W. Xu; T. Zhao Effects of strain rate on the mechanical and fracturing behaviors of rock-like specimens containing two unparallel fissures under uniaxial compression, Soil Dyn. Earthq. Eng., Volume 110 (2018), pp. 195-211

[4] Q.B. Lin; P. Cao; R.H. Cao Experimental investigation of jointed rock breaking under a disc cutter with different confining stresses, C. R. Mecanique, Volume 346 (2018) no. 9, pp. 833-843

[5] R.H. Cao; P. Cao; X. Fan; X.G. Xiong; H. Lin An experimental and numerical study on mechanical behavior of ubiquitous-joint brittle rock-like specimens under uniaxial compression, Rock Mech. Rock Eng., Volume 49 (2016) no. 11, pp. 4319-4338

[6] H. Lin; W. Xiong; Q. Yan Three dimensional effect of tensile strength in the standard Brazilian test considering contact length, Geotech. Test. J., Volume 39 (2015) no. 1, pp. 137-143

[7] Y.L. Zhao; L.Y. Zhang; W.J. Wang; W. Wan; W.H. Ma Separation of elasto visco plastic strains of rock and a nonlinear creep model, Int. J. Geomech. (2018) | DOI

[8] J. Liu; J. Wang The effect of indentation sequence on rock breakages: a study based on laboratory and numerical tests, C. R. Mecanique, Volume 346 (2018) no. 1, pp. 26-38

[9] X. Fan; K.H. Li; H.P. Lai; Y.L. Xie; R.H. Cao; J. Zheng Internal stress distribution and cracking around flaws and openings of rock block under uniaxial compression: a particle mechanics approach, Comput. Geotech., Volume 102 (2018), pp. 28-38

[10] H. Haeri; K. Shahriar; M.F. Marji; P. Moarefvand Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks, Int. J. Rock Mech. Min. Sci., Volume 67 (2014), pp. 20-28

[11] H.Q. Li; L.N.Y. Wong Numerical study on coalescence of pre-existing flaw pairs in rock-like material, Rock Mech. Rock Eng., Volume 47 (2013) no. 6, pp. 2087-2105

[12] P. Cao; T.Y. Liu; C.Z. Pu; H. Lin Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression, Eng. Geol., Volume 187 (2015), pp. 113-121

[13] Y.L. Zhao; L.Y. Zhang; W.J. Wang; C.Z. Pu; W. Wan; J.Z. Tang Cracking and stress-strain behavior of rock-like material containing two flaws under uniaxial compression, Rock Mech. Rock Eng., Volume 49 (2016) no. 7, pp. 2665-2687

[14] X.P. Zhou; H.Q. Yang Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses, Int. J. Rock Mech. Min. Sci., Volume 55 (2012), pp. 15-27

[15] F. Dai; K. Xia; J.P. Zuo; R. Zhang; N.W. Xu Static and dynamic flexural strength anisotropy of Barre granite, Rock Mech. Rock Eng., Volume 46 (2013) no. 6, pp. 1589-1602

[16] F. Dai; Y. Xu; T. Zhao; N.W. Xu; Y. Liu Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests, Int. J. Rock Mech. Min. Sci., Volume 88 (2016), pp. 49-60

[17] N. Erarslan; D.J. Williams Mixed-mode fracturing of rocks under static and cyclic loading, Rock Mech. Rock Eng., Volume 46 (2012) no. 5, pp. 1035-1052

[18] Y. Liu; F. Dai; L. Dong; N.W. Xu; P. Feng Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters, Rock Mech. Rock Eng., Volume 51 (2018) no. 1, pp. 47-68

[19] Y. Liu; F. Dai; P. Feng; N.W. Xu Mechanical behavior of intermittent jointed rocks under random cyclic compression with different loading parameters, Soil Dyn. Earthq. Eng., Volume 113 (2018), pp. 12-24

[20] N.A. Al-Shayea Crack propagation trajectories for rocks under mixed mode I–II fracture, Eng. Geol., Volume 81 (2005) no. 1, pp. 84-97

[21] D. Huang; D. Gu; C. Yang; R. Huang; G. Fu Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression, Rock Mech. Rock Eng., Volume 49 (2015) no. 2, pp. 375-399

[22] M. Jiang; H. Chen; G.B. Crosta Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model, Int. J. Rock Mech. Min. Sci., Volume 78 (2015), pp. 175-189

[23] Y. Li; J. Peng; F. Zhang; Z. Qiu Cracking behavior and mechanism of sandstone containing a pre-cut hole under combined static and dynamic loading, Eng. Geol., Volume 213 (2016), pp. 64-73

[24] L.N.Y. Wong; H.H. Einstein Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression, Int. J. Rock Mech. Min. Sci., Volume 46 (2009) no. 2, pp. 239-249

[25] X.P. Zhou; H. Cheng; Y.F. Feng An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression, Rock Mech. Rock Eng., Volume 47 (2013) no. 6, pp. 961-1986

[26] X.P. Zhang; Q.S. Liu; S.C. Wu; X.H. Tang Crack coalescence between two non-parallel flaws in rock-like material under uniaxial compression, Eng. Geol., Volume 199 (2015), pp. 74-90

[27] G. da Silva; H.H.B. Einstein Modeling of crack initiation, propagation and coalescence in rocks, Int. J. Fract., Volume 182 (2013), pp. 167-186

[28] S.Y. Wang; S.W. Sloan; D.C. Sheng; C.A. Tang 3D numerical analysis of crack propagation of heterogeneous notched rock under uniaxial tension, Tectonophysics, Volume 677–678 (2016), pp. 45-67

[29] S.Y. Wang; S.W. Sloan; D.C. Sheng; C.A. Tang Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression, Int. J. Solids Struct., Volume 51 (2014) no. 5, pp. 1132-1148

[30] R.H.C. Wong; P. Lin Numerical study of stress distribution and crack coalescence mechanisms of a solid containing multiple holes, Int. J. Rock Mech. Min. Sci., Volume 79 (2015), pp. 41-54

[31] Y. Liu; F. Dai; T. Zhao; N.W. Xu Numerical investigation of the dynamic properties of intermittent jointed rock models subjected to cyclic uniaxial compression, Rock Mech. Rock Eng., Volume 50 (2017), pp. 89-112

[32] D.O. Potyondy; P.A. Cundall A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., Volume 41 (2004), pp. 1329-1364

[33] Y. Xu; F. Dai; N.W. Xu; T. Zhao Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing, Rock Mech. Rock Eng., Volume 49 (2016) no. 3, pp. 731-745

[34] F.V. Donze; V. Richefeu; S.A. Magnier Advances in discrete element method applied to soil rock and concrete mechanics, Electron. J. Geolog. Eng., Volume 8 (2009), pp. 1-44

[35] Y.S. Xie; P. Cao; J. Liu; L.W. Dong Influence of crack surface friction on crack initiation and propagation: a numerical investigation based on extended finite element method, Comput. Geotech., Volume 74 (2016), pp. 1-14

[36] J. Liu; J. Wang Stress evolution of rock-like specimens containing a single fracture under uniaxial loading: a numerical study based on particle flow code, Geotech. Geolog. Eng., Volume 38 (2018) no. 1, pp. 567-580

[37] X.P. Zhang; L.N.Y. Wong Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach, Rock Mech. Rock Eng., Volume 46 (2012) no. 5, pp. 1001-1021

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Cracking behavior and local stress characteristics around the opening surrounded by two intermittent joints: experiment and numerical simulation

Yuan-Chao Zhang; Yu-Jing Jiang; Xiao-Jie Tang; ...

C. R. Méca (2020)


Numerical analysis of the compressive and shear failure behavior of rock containing multi-intermittent joints

Xiang Fan; Hang Lin; Hongpeng Lai; ...

C. R. Méca (2019)


DEM analysis of the effect of joint geometry on the shear behavior of rocks

Mingjing Jiang; Jun Liu; Giovanni B. Crosta; ...

C. R. Méca (2017)