Comptes Rendus
Effect of non-persistent joints distribution on shear behavior
Comptes Rendus. Mécanique, Volume 347 (2019) no. 6, pp. 477-489.

The particle flow code 2D (PFC2D) is used to establish a coplanar, non-persistent joint model. Three joint distribution types, namely, both-side (type a), scattered (type b), and central (type c), are set according to their position. Numerical simulations of the direct shear test are conducted to investigate the effect of non-persistent joint distribution and connectivity on shear mechanical behavior. Simulation results are in good agreement with the analytical solutions to Jennings' criterion, and show: (1) type-c and type-b joints have high strength, whereas type-a joints have low strength. Shear strength and modulus increase with a decrease in joint persistency, and the shear displacement that correspond to shear strength increases with a decrease in persistency. (2) The brittle failure characteristics of the sample are evident when the intact rock bridge area is large. Reinforcement at both ends of the joint limits shear deformation, and shear strength can be effectively improved when joint persistency is large. The small-area dispersed reinforcement joint method cannot effectively improve shear strength. (3) The comprehensive shear strength parameters and the shear strength of the non-persistent joints can be predicted well using Jennings' criterion. Cohesion is the dominant factor that controls shear strength.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2019.05.001
Mots clés : Non-persistent joints, Joints distribution type, Joint persistency, Numerical simulation, Shear strength
Hang Lin 1 ; Xuran Ding 1 ; Rui Yong 2 ; Wanzhong Xu 3 ; Shigui Du 2

1 School of Resource Safety Engineering, Central South University, Changsha, Hunan 410083, China
2 Ocean College, Zhejiang University, Zhoushan, Zhejiang 316000, China
3 College of Territory and Resource Engineering, Kunming University of Science and Technology, Kunming, Yunan 650093, China
@article{CRMECA_2019__347_6_477_0,
     author = {Hang Lin and Xuran Ding and Rui Yong and Wanzhong Xu and Shigui Du},
     title = {Effect of non-persistent joints distribution on shear behavior},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {477--489},
     publisher = {Elsevier},
     volume = {347},
     number = {6},
     year = {2019},
     doi = {10.1016/j.crme.2019.05.001},
     language = {en},
}
TY  - JOUR
AU  - Hang Lin
AU  - Xuran Ding
AU  - Rui Yong
AU  - Wanzhong Xu
AU  - Shigui Du
TI  - Effect of non-persistent joints distribution on shear behavior
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 477
EP  - 489
VL  - 347
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2019.05.001
LA  - en
ID  - CRMECA_2019__347_6_477_0
ER  - 
%0 Journal Article
%A Hang Lin
%A Xuran Ding
%A Rui Yong
%A Wanzhong Xu
%A Shigui Du
%T Effect of non-persistent joints distribution on shear behavior
%J Comptes Rendus. Mécanique
%D 2019
%P 477-489
%V 347
%N 6
%I Elsevier
%R 10.1016/j.crme.2019.05.001
%G en
%F CRMECA_2019__347_6_477_0
Hang Lin; Xuran Ding; Rui Yong; Wanzhong Xu; Shigui Du. Effect of non-persistent joints distribution on shear behavior. Comptes Rendus. Mécanique, Volume 347 (2019) no. 6, pp. 477-489. doi : 10.1016/j.crme.2019.05.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.05.001/

[1] X. Fan; P.H.S.W. Kulatilake; X. Chen Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: a particle mechanics approach, Eng. Geol., Volume 190 (2015), pp. 17-32

[2] Y. Zhao; L. Zhang; W. Wang et al. Cracking and stress–strain behavior of rock-like material containing two flaws under uniaxial compression, Rock Mech. Rock Eng., Volume 49 (2016) no. 7, pp. 2665-2687

[3] S.Q. Yang; X.R. Liu; H.W. Jing Experimental investigation on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression, Int. J. Rock Mech. Min. Sci., Volume 63 (2013) no. 5, pp. 82-92

[4] N. Halakatevakis; A.I. Sofianos Correlation of the Hoek–Brown failure criterion for a sparsely jointed rock mass with an extended plane of weakness theory, Int. J. Rock Mech. Min. Sci., Volume 47 (2010) no. 7, pp. 1166-1179

[5] A. Haque; J. Kodikara A simplified analytical model for predicting the shear behaviour of regular triangular rock/concrete joints under constant normal stiffness, Geotechnique, Volume 62 (2012) no. 2, pp. 171-176

[6] J. Shen; M. Karakus Three-dimensional numerical analysis for rock slope stability using shear strength reduction method, Can. Geotech. J., Volume 51 (2014), pp. 164-172

[7] Y. Wang; H. Lin; Y. Zhao Analysis of fracturing characteristics of unconfined rock plate under edge-on impact loading, Eur. J. Environ. Civ. En. (2019), pp. 1-16

[8] R. Yong; J. Ye; B. Li et al. Determining the maximum sampling interval in rock joint roughness measurements using Fourier series, Int. J. Rock Mech. Min. Sci., Volume 101 (2018), pp. 78-88

[9] M. Bahaaddini; G. Sharrock; B.K. Hebblewhite Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression, Comput. Geotech., Volume 49 (2013) no. 20, pp. 206-225

[10] N. Bahrani; P.K. Kaiser; B. Valley Distinct element method simulation of an analogue for a highly interlocked, non-persistently jointed rockmass, Int. J. Rock Mech. Min. Sci., Volume 71 (2014) no. 1, pp. 117-130

[11] D.L. Hopkins The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations, and faults, Int. J. Rock Mech. Min. Sci., Volume 37 (2000) no. 1–2, pp. 175-202

[12] W.G. Pariseau; S. Puri; S.C. Schmelter A new model for effects of impersistent joint sets on rock slope stability, Int. J. Rock Mech. Min. Sci., Volume 45 (2008) no. 2, pp. 122-131

[13] H. Lin; H. Wang; X. Fan et al. Particle size distribution effects on deformation properties of graded aggregate base under cyclic loading, Eur. J. Environ. Civ. En., Volume 23 (2019) no. 3, pp. 269-286

[14] R. Yong; X. Fu; M. Huang et al. A rapid field measurement method for the determination of Joint Roughness Coefficient of large rock joint surfaces, KSCE J. Civ. Eng., Volume 22 (2018) no. 1, pp. 101-109

[15] Q. Liu; W. Xing; Y. Li Numerical built-in method for the nonlinear JRC/JCS model in rock joint, Sci. World J., Volume 2014 (2014) no. 8

[16] E.Z. Lajtai Shear strength of weakness planes in rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 6 (1969) no. 5, pp. 499-515

[17] M. Asadizadeh; M. Moosavi; M.F. Hossaini et al. Shear strength and cracking process of non-persistent jointed rocks: an extensive experimental investigation, Rock Mech. Rock Eng., Volume 51 (2018) no. 2, pp. 415-428

[18] Z.C. Tang; C.C. Xia; Y.M. Liu Modified Jennings shear strength criterion based on mechanical weakening model of rock bridges, Chin. J. Geotechn. Eng., Volume 34 (2012) no. 11, pp. 2093-2099

[19] A. Ghazvinian A study of the failure mechanism of planar non-persistent open joints using PFC2D, Rock Mech. Rock Eng., Volume 45 (2012) no. 5, pp. 677-693

[20] Y. Cheng; W. Yang; D. He Influence of structural plane microscopic parameters on direct shear strength, Adv. Civ. Eng., Volume 2018 (2018)

[21] R. Cao; P. Cao; H. Lin et al. Experimental and numerical study of the failure process and energy mechanisms of rock-like materials containing cross un-persistent joints under uniaxial compression, PLoS ONE, Volume 12 (2017) no. 12

[22] R. Cao; W. Tang; H. Lin et al. Numerical analysis for the progressive failure of binary-medium interface under shearing, Adv. Civ. Eng. (2018)

[23] A. Manouchehrian; M. Sharifzadeh; M.F. Marji et al. A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression, Arch. Civ. Mech. Eng., Volume 14 (2014) no. 1, pp. 40-52

[24] R.-H. Cao; P. Cao; H. Lin et al. Failure characteristics of intermittent fissures under a compressive-shear test: experimental and numerical analyses, Theor. Appl. Fract. Mech., Volume 96 (2018), pp. 740-757

[25] H. Huang Discrete Element Modeling of Tool-Rock Interaction, University of Minnesota, MN, USA, 1999 (Ph.D. thesis)

[26] D.O. Potyondy; P.A. Cundall A bonded-particle model for rock, Int. J. Rock Mech. Min. Sci., Volume 41 (2004) no. 8, pp. 1329-1364

[27] B. Yang; J. Yue; S. Lei A study on the effects of microparameters on macroproperties for specimens created by bonded particles, Eng. Comput., Volume 23 (2006) no. 6, pp. 607-631

[28] J. Yoon Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation, Int. J. Rock Mech. Min. Sci., Volume 44 (2007) no. 6, pp. 871-889

[29] X. Ding; L. Zhang; H. Zhu et al. Effect of model scale and particle size distribution on PFC3D simulation results, Rock Mech. Rock Eng., Volume 47 (2014) no. 6, pp. 2139-2156

[30] R.H. Cao; P. Cao; H. Lin et al. Particle flow analysis of direct shear tests on joints with different roughnesses, Rock Soil Mech., Volume 34 (2013), pp. 456-463

[31] S.G. Liu; H.N. Liu; S.J. Wang et al. Direct shear tests and PFC2D numerical simulation of intermittent joints, Chin. J. Rock Mech. Eng., Volume 27 (2008) no. 9, pp. 1828-1836

[32] B. Stimpson Failure of slopes containing discontinuous planar joints, Stateline, NV, USA, University of Nevada, Reno, NV, USA (1978), pp. 296-300

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Genomic selection in domestic animals: Principles, applications and perspectives

Didier Boichard; Vincent Ducrocq; Pascal Croiseau; ...

C. R. Biol (2016)


Les concentrations à sillimanite du Sud Velay et l'évolution PTt fini-hercynienne dans le Massif central (France)

Pierre Barbey; Jean Macaudière; Christian Marignac; ...

C. R. Géos (2005)


Mixing is an aggregation process

Emmanuel Villermaux; Jérôme Duplat

C. R. Méca (2003)