Comptes Rendus
Automated numerical simulation of the propagation of multiple cracks in a finite plane using the distributed dislocation method
Comptes Rendus. Mécanique, Volume 347 (2019) no. 3, pp. 191-206.

In this paper, an automated numerical simulation of the propagation of multiple cracks in a finite elastic plane by the distributed dislocation method is developed. Firstly, a solution to the problem of a two-dimensional finite elastic plane containing multiple straight cracks and kinked cracks is presented. A serial of distributed dislocations in an infinite plane are used to model all the cracks and the boundary of the finite plane. The mixed-mode stress intensity factors of all the cracks can be calculated by solving a system of singular integral equations with the Gauss–Chebyshev quadrature method. Based on the solution, the propagation of multiple cracks is modeled according to the maximum circumferential stress criterion and Paris' law. Several numerical examples are presented to show the accuracy and efficiency of this method for the simulation of multiple cracks in a 2D finite plane.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2019.01.004
Keywords: Distributed dislocation, Multiple cracks, Finite plane, Fatigue propagation

Jiong Zhang 1; Zhan Qu 2; Weidong Liu 3; Liankun Wang 1

1 School of Civil Engineering and Architecture, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, PR China
2 School of Aeronautics, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an 710072, PR China
3 College of Energy and Electrical Engineering, Hohai University, No. 8 Fochengxi Road, Nanjing 211100, PR China
@article{CRMECA_2019__347_3_191_0,
     author = {Jiong Zhang and Zhan Qu and Weidong Liu and Liankun Wang},
     title = {Automated numerical simulation of the propagation of multiple cracks in a finite plane using the distributed dislocation method},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {191--206},
     publisher = {Elsevier},
     volume = {347},
     number = {3},
     year = {2019},
     doi = {10.1016/j.crme.2019.01.004},
     language = {en},
}
TY  - JOUR
AU  - Jiong Zhang
AU  - Zhan Qu
AU  - Weidong Liu
AU  - Liankun Wang
TI  - Automated numerical simulation of the propagation of multiple cracks in a finite plane using the distributed dislocation method
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 191
EP  - 206
VL  - 347
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2019.01.004
LA  - en
ID  - CRMECA_2019__347_3_191_0
ER  - 
%0 Journal Article
%A Jiong Zhang
%A Zhan Qu
%A Weidong Liu
%A Liankun Wang
%T Automated numerical simulation of the propagation of multiple cracks in a finite plane using the distributed dislocation method
%J Comptes Rendus. Mécanique
%D 2019
%P 191-206
%V 347
%N 3
%I Elsevier
%R 10.1016/j.crme.2019.01.004
%G en
%F CRMECA_2019__347_3_191_0
Jiong Zhang; Zhan Qu; Weidong Liu; Liankun Wang. Automated numerical simulation of the propagation of multiple cracks in a finite plane using the distributed dislocation method. Comptes Rendus. Mécanique, Volume 347 (2019) no. 3, pp. 191-206. doi : 10.1016/j.crme.2019.01.004. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.01.004/

[1] P.O. Bouchard; F. Bay; Y. Chastel Numerical modeling of crack propagation: automatic remeshing and comparison of different criteria, Comput. Methods Appl. Mech. Eng., Volume 192 (2003), pp. 3887-3908

[2] H. Chi; C. Talischi; O. Lopez-Pamies; G.H. Paulino Polygonal finite elements for finite elasticity, Int. J. Numer. Methods Eng., Volume 101 (2015), pp. 305-328

[3] A.R. Khoei; R. Yasbolaghi; S.O.R. Biabanaki A polygonal finite element method for modeling crack propagation with minimum remeshing, Int. J. Fract., Volume 194 (2015), pp. 123-148

[4] Z. Wang; L. Ma; L. Wu Numerical simulation of crack growth in brittle matrix of particle reinforced composites using the XFEM technique, Acta Mech. Solida Sin., Volume 25 (2012), pp. 9-21

[5] S. Natarajan; P. Kerfriden; D. Roy Mahapatra Numerical analysis of the inclusion–crack interaction by the extended finite element method, Int. J. Comput. Methods Eng. Sci. Mech., Volume 15 (2014), pp. 26-32

[6] F. Erdogan; G.D. Gupta; M. Ratwani Interaction between a circular inclusion and an arbitrarily oriented crack, J. Appl. Mech., Volume 41 (1974), pp. 1007-1013

[7] M. Comninou; F.-K. Chang Effects of partial closure and friction on a radial crack emanating from a circular hole, Int. J. Fract., Volume 28 (1985), pp. 29-36

[8] D.A. Hills; M. Comninou A normally loaded half plane with an edge crack, Int. J. Solids Struct., Volume 21 (1985), pp. 399-410

[9] D. Nowell; D.A. Hills Open cracks at or near free of positive radial stresses along the crack line in the edges, J. Strain Anal. Eng. Des., Volume 22 (1987), pp. 177-185

[10] D.A. Hills; P.A. Kelly; D.N. Dai; A.M. Korsunsky Solution of Crack Problems – the Distributed Dislocation, Kluwer Academic Publishers, Dordrecht, 1996

[11] J. Weertman Dislocation Based Fracture Mechanics, World Scientific, Singapore, 1996

[12] X. Li; X. Jiang; X. Li Solution of an inclined crack in a finite plane and a new criterion to predict fatigue crack propagation, Int. J. Mech. Sci., Volume 119 (2016), pp. 217-223

[13] L. Xiaotao; L. Xu; J. Xiaoyu Influence of a micro-crack on the finite macro-crack, Eng. Fract. Mech., Volume 177 (2017), pp. 95-103

[14] X. Jin; L. Keer Solution of multiple edge cracks in an elastic plane, Int. J. Fract., Volume 137 (2006), pp. 121-137

[15] X. Jin Analysis of Some Two-Dimensional Problems Containing Cracks and Holes, Northwestern University, Evanston, USA, 2006

[16] N. Hallback; M.W. Tofique Development of a distributed dislocation dipole technique for the analysis of multiple straight, kinked and branched cracks in an elastic half-plane, Int. J. Solids Struct., Volume 51 (2014), pp. 2878-2892

[17] D.N. Dai Modeling cracks in finite bodies by distributed dislocation dipoles, Fatigue Fract. Eng. Mater. Struct., Volume 25 (2002), pp. 27-39

[18] J.J. Han; M.D. Hanasekar Modelling cracks in arbitrarily shaped finite bodies by distribution of dislocation, Int. J. Solids Struct., Volume 41 (2004), pp. 399-411

[19] J. Zhang; Z. Qu; Q. Huang Solution of multiple cracks in a finite plate of an elastic isotropic material with the distributed dislocation method, Acta Mech. Solida Sin., Volume 27 (2014), pp. 276-283

[20] K. Sharma; S. Singh Numerical distributed dislocation modeling of multiple cracks in piezoelectric media considering different crack-face boundary conditions and finite size effects, Strength Fract. Complex., Volume 10 (2017), pp. 49-72

[21] K. Sharma; T.Q. Bui; R.R. Bhargava Numerical studies of an array of equidistant semi-permeable inclined cracks in 2-D piezoelectric strip using distributed dislocation method, Int. J. Solids Struct., Volume 80 (2016), pp. 137-145

[22] F. Erdogan; G.D. Gupta; T.S. Cook Numerical solution of singular integral equations (G.C. Sih, ed.), Methods of Analysis and Solutions of Crack Problems, Noordhoff, Leyden, The Netherlands, 1973

[23] Y.Z. Chen; Z.X. Wang Solution of multiple crack problems in a finite plate using coupled integral equations, Int. J. Solids Struct., Volume 49 (2012), pp. 87-94

[24] Y.Z. Chen; X.Y. Lin; Z.X. Wang Evaluation of the T-stress and stress intensity factor for a cracked plate in general case using eigenfunction expansion variational method, Fatigue Fract. Eng. Mater. Struct., Volume 31 (2008), pp. 476-487

[25] M. Duflot; H. Nguyen-Dang A meshless method with enriched weight functions for fatigue crack growth, Int. J. Numer. Methods, Volume 59 (2004), pp. 1945-1961

Cited by Sources:

Comments - Policy