Comptes Rendus
High-order shear theory for static analysis of functionally graded plates with porosities
Comptes Rendus. Mécanique, Volume 347 (2019) no. 3, pp. 207-217.

The bending responses of porous functionally graded (FG) thick rectangular plates are investigated according to a high-order shear deformation theory. Both the effect of shear strain and normal deformation are included in the present theory and so it does not need any shear correction factor. The equilibrium equations according to the porous FG plates are derived. The solution to the problem is derived by using Navier's technique. Numerical results have been reported and compared with those available in the open literature for non-porous plates. The effects of the exponent graded and porosity factors are investigated.

Published online:
DOI: 10.1016/j.crme.2019.01.001
Keywords: High-order theory, Functionally graded, Porosity, Plates

Slimane Merdaci 1; Hakima Belghoul 2

1 Structures and Advanced Materials in Civil Engineering and Public Works Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering and Public Works Department, Algeria
2 Laboratoire de mécanique physique des matériaux (LMPM), Université Djillali-Liabès de Sidi Bel Abbes, Algeria
     author = {Slimane Merdaci and Hakima Belghoul},
     title = {High-order shear theory for static analysis of functionally graded plates with porosities},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {207--217},
     publisher = {Elsevier},
     volume = {347},
     number = {3},
     year = {2019},
     doi = {10.1016/j.crme.2019.01.001},
     language = {en},
AU  - Slimane Merdaci
AU  - Hakima Belghoul
TI  - High-order shear theory for static analysis of functionally graded plates with porosities
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 207
EP  - 217
VL  - 347
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crme.2019.01.001
LA  - en
ID  - CRMECA_2019__347_3_207_0
ER  - 
%0 Journal Article
%A Slimane Merdaci
%A Hakima Belghoul
%T High-order shear theory for static analysis of functionally graded plates with porosities
%J Comptes Rendus. Mécanique
%D 2019
%P 207-217
%V 347
%N 3
%I Elsevier
%R 10.1016/j.crme.2019.01.001
%G en
%F CRMECA_2019__347_3_207_0
Slimane Merdaci; Hakima Belghoul. High-order shear theory for static analysis of functionally graded plates with porosities. Comptes Rendus. Mécanique, Volume 347 (2019) no. 3, pp. 207-217. doi : 10.1016/j.crme.2019.01.001.

[1] S. Suresh; A. Mortensen Fundamental of Functionally Graded Materials, Maney, London, 1998

[2] J. Zhu; Z. Lai; Z. Yin; J. Jeon; S. Lee Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy, Mater. Chem. Phys., Volume 68 (2001), pp. 130-135

[3] N. Wattanasakulpong; B.G. Prusty; D.W. Kelly; M. Hoffman Free vibration analysis of layered functionally graded beams with experimental validation, Mater. Des., Volume 36 (2012), pp. 182-190

[4] A.S. Rezaei; A.R. Saidi Exact solution for free vibration of thick rectangular plates made of porous materials, Compos. Struct., Volume 134 (2015), pp. 1051-1060

[5] A. Behravan Rad; M. Shariyat Three-dimensional magneto-elastic analysis of asymmetric variable thickness porous FGM circular plates with non-uniform tractions and Kerr elastic foundations, Compos. Struct., Volume 125 (2015), pp. 558-574

[6] A.S. Rezaei; A.R. Saidi Application of Carrera unified formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates, Composites, Part B, Eng., Volume 91 (2016), pp. 361-370

[7] N. Shafiei; A. Mousavi; M. Ghadiri On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams, Int. J. Eng. Sci., Volume 106 (2016), pp. 42-56

[8] D. Chen; J. Yang; S. Kitipornchai Free and forced vibrations of shear deformable functionally graded porous beams, Int. J. Mech. Sci., Volume 108–109 (2016), pp. 14-22

[9] D. Chen; S. Kitipornchai; J. Yang Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core, Thin-Walled Struct., Volume 107 (2016), pp. 39-48

[10] F. Ebrahimi; F. Ghasemi; E. Salari Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities, Meccanica, Volume 51 (2016), pp. 223-249

[11] N. Shafiei; S.S. Mirjavadi; B. MohaselAfshari; S. Rabby; M. Kazemi Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams, Comput. Methods Appl. Mech. Eng., Volume 322 (2017), pp. 615-632

[12] F. Ebrahimi; A. Jafari; M.R. Barati Vibration analysis of magneto–electro-elastic heterogeneous porous material plates resting on elastic foundations, Thin-Walled Struct., Volume 119 (2017), pp. 33-46 (2017)

[13] A.S. Rezaei; A.R. Saidi; M. Abrishamdari; M.H. Pour Mohammadi Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: an analytical approach, Thin-Walled Struct., Volume 120 (2017), pp. 366-377

[14] A.S. Rezaei; A.R. Saidi On the effect of coupled solid–fluid deformation on natural frequencies of fluid saturated porous plates, Eur. J. Mech. A, Solids, Volume 63 (2017), pp. 99-109

[15] B. Lhoucine; E. Khalid; B. Rhali Thermal behavior analysis at large free vibration amplitudes of thin annular FGM plates with porosities, Proc. Eng., Volume 199 (2017), pp. 528-533

[16] Y. Wang; D. Wu Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory, Aerosp. Sci. Technol., Volume 66 (2017), pp. 83-91

[17] M. Ghadiri; H. SafarPour Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment, J. Therm. Stresses, Volume 40 (2017) no. 1, pp. 55-71

[18] Y.S. Al Rjoub; A.G. Hamad Free vibration of functionally Euler–Bernoulli and Timoshenko graded porous beams using the transfer matrix method, KSCE J. Civ. Eng., Volume 21 (2017) no. 3, pp. 792-806

[19] A. Ghorbanpour Arani; M. Khani; Z. Khoddami Maraghi Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory, J. Vib. Control., Volume 24 (2017) no. 3, pp. 1-16

[20] M.R. Barati; H. Shahverdi; A.M. Zenkour Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory, Mech. Adv. Mat. Struct., Volume 24 (2017) no. 12, pp. 987-998

[21] D. Wu; A. Liu; Y. Huang; Y. Huang; Y. Pi; W. Gao Dynamic analysis of functionally graded porous structures through finite element analysis, Eng. Struct., Volume 165 (2018), pp. 287-301

[22] E. Arshid; A.R. Khorshidvand Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method, Thin-Walled Struct., Volume 125 (2018), pp. 220-233

[23] D. Chen; S. Kitipornchai; J. Yang Dynamic response and energy absorption of functionally graded porous structures, Mater. Des., Volume 140 (2018), pp. 473-487

[24] M.R. Barati A general nonlocal stress–strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates, Eur. J. Mech. A, Solids, Volume 67 (2018), pp. 215-230

[25] L. Li; H. Tang; Y. Hu Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature, Compos. Struct., Volume 184 (2018), pp. 1177-1188

[26] M.R. Barati Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity, Acta Mech., Volume 229 (2018), pp. 1183-1196

[27] F. Ebrahimi; A. Jafari A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities, Mech. Adv. Mat. Struct., Volume 25 (2018) no. 3, pp. 212-224

[28] M.R. Barati; H. Shahverdi Nonlinear vibration of nonlocal four-variable graded plates with porosities implementing homotopy perturbation and Hamiltonian methods, Acta Mech., Volume 229 (2018), pp. 343-362

[29] M. Jabbari; A. Mojahedin; M. Haghi Buckling analysis of thin circular FG plates made of saturated porous-soft ferromagnetic materials in transverse magnetic field, Thin-Walled Struct., Volume 85 (2014), pp. 50-56

[30] A.R. Khorshidvand; E. Farzaneh Joubaneh; M. Jabbari; M.R. Eslami Buckling analysis of a porous circular plate with piezoelectric sensor–actuator layers under uniform radial compression, Acta Mech., Volume 225 (2014), pp. 179-193

[31] A. Mojahedin; E. Farzaneh Joubaneh; M. Jabbari Thermal and mechanical stability of a circular porous plate with piezoelectric actuators, Acta Mech., Volume 225 (2014), pp. 3437-3452

[32] M. Jabbari; M. Hashemitaheri; A. Mojahedin; M.R. Eslami Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials, J. Therm. Stresses, Volume 37 (2014), pp. 202-220

[33] E. Farzaneh Joubaneh; A. Mojahedin; A.R. Khorshidvand; M. Jabbari Thermal buckling analysis of porous circular plate with piezoelectric sensor–actuator layers under uniform thermal load, J. Sandw. Struct. Mater., Volume 17 (2015) no. 1, pp. 3-25

[34] M.R. Barati; M.H. Sadr; A.M. Zenkour Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation, Int. J. Mech. Sci., Volume 117 (2016), pp. 309-320

[35] A. Mojahedin; M. Jabbari; A.R. Khorshidvand; M.R. Eslami Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory, Thin-Walled Struct., Volume 99 (2016), pp. 83-90

[36] M.R. Feyzi; A.R. Khorshidvand Axisymmetric post-buckling behavior of saturated porous circular plates, Thin-Walled Struct., Volume 112 (2017), pp. 149-158

[37] A.S. Rezaei; A.R. Saidi Buckling response of moderately thick fluid-infiltrated porous annular sector plates, Acta Mech., Volume 228 (2017), pp. 3929-3945

[38] P.H. Cong; T.M. Chien; N.D. Khoa; N.D. Duc Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT, Aerosp. Sci. Technol., Volume 77 (2018), pp. 419-428

[39] M.H. Shojaeefard; H.S. Googarchin; M. Ghadiri; M. Mahinzare Micro temperature-dependent FG porous plate: free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT, Appl. Math. Model., Volume 50 (2017), pp. 633-655

[40] D. Chen; J. Yang; S. Kitipornchai Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams, Compos. Sci. Technol., Volume 142 (2017), pp. 235-245

[41] S. Kitipornchai; D. Chen; J. Yang Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets, Mater. Des., Volume 116 (2017), pp. 656-665

[42] J. Yang; D. Chen; S. Kitipornchai Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method, Compos. Struct., Volume 193 (2018), pp. 281-294

[43] A. Behravan Rad Static analysis of non-uniform 2D functionally graded auxeticporous circular plates interacting with the gradient elastic foundations involving friction force, Aerosp. Sci. Technol., Volume 76 (2018), pp. 315-339

[44] E. Reissner The effect of transverse shear deformation on the bending of elastic plates, Trans. ASME J. Appl. Mech., Volume 12 (1945), pp. 69-77

[45] R.D. Mindlin Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, Trans. ASME J. Appl. Mech., Volume 18 (1951), pp. 31-38

[46] L. Librescu On the theory of anisotropic elastic shells and plates, Int. J. Solids Struct., Volume 3 (1967), pp. 53-68

[47] M. Levinson An accurate simple theory of the static and dynamics of elastic plates, Mech. Res. Commun., Volume 7 (1980), pp. 343-350

[48] A. Bhimaraddi; L.K. Stevens A higher order theory for free vibration of orthotropic, homogeneous and laminated rectangular plates, Trans. ASME J. Appl. Mech., Volume 51 (1984), pp. 195-198

[49] J.N. Reddy A simple higher-order theory for laminated composite plates, Trans. ASME J. Appl. Mech., Volume 51 (1984), pp. 745-752

[50] J.G. Ren A new theory of laminated plate, Compos. Sci. Technol., Volume 26 (1986), pp. 225-239

[51] T. Kant; B.N. Pandya A simple finite element formulation of a higher-order theory for unsymmetrically laminated composite plates, Compos. Struct., Volume 9 (1988), pp. 215-264

[52] P.R. Mohan; B.P. Naganarayana; G. Prathap Consistent and variational correct finite elements for higher-order laminated plate theory, Compos. Struct., Volume 29 (1994), pp. 445-456

[53] A.K. Noor; W.S. Burton Assessment of shear deformation theories for multilayered composite plates, Appl. Mech. Rev., Volume 42 (1989), pp. 1-13

[54] J.N. Reddy A review of refined theories of laminated composite plates, Shock Vib. Dig., Volume 22 (1990), pp. 3-17

[55] J.N. Reddy An evaluation of equivalent-single-layer and layerwise theories of composite laminates, Compos. Struct., Volume 25 (1993), pp. 21-35

[56] M. Mallikarjuna; T. Kant A critical review and some results of recently developed refined theories of fiber-reinforced laminated composites and sandwiches, Compos. Struct., Volume 23 (1993), pp. 293-312

[57] L. Dahsin; L. Xiaoyu An overall view of laminate theories based on displacement hypothesis, J. Compos. Mater., Volume 30 (1996), pp. 1539-1561

[58] G.N. Praveen; J.N. Reddy Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates, Int. J. Solids Struct., Volume 35 (1998), pp. 4457-4476

[59] M.M. Najafizadeh; M.R. Eslami Buckling analysis of circular plates of functionally graded materials under uniform radial compression, Int. J. Mech. Sci., Volume 44 (2002), pp. 2479-2493

[60] S. Merdaci; A. Tounsi; M.S.A. Houari; I. Mechab; H. Hebali; S. Benyoucef Two new refined shear displacement models for functionally graded sandwich plates, Arch. Appl. Mech., Volume 81 (2011)

[61] M. Touratier An efficient standard plate theory, Eng. Sci., Volume 29 (1991) no. 8, pp. 901-916

[62] S.P. Timoshenko; J.M. Gere Mechanics of Materials, D. Van Nostrand Company, New York, 1972

Cited by Sources:

Comments - Policy