The Note is concerned with a feasibility study of time reversal in a non-homogeneous elastic medium, from data recorded in an acoustic medium. Our aim here is to determine the presence and some physical properties of elastic “inclusions” (unknown, not observable solid objects, characterized by their elastic properties) from partial observations of acoustic waves scattered by these inclusions. A finite element numerical method, based on a variational acousto-elastodynamics formulation, is derived and used to solve the forward, and then, the time-reversed problem. A criterion, derived from the reverse time migration framework, is introduced, to help construct images of the inclusions to be determined. Numerical illustrations on configurations that mimic the breast cancer configuration are proposed, and show that one can differentiate between two inclusions, even with different properties.
Le but de cette note est d'étudier le retourné temporel d'un problème posé dans un milieu acousto-élastique non homogène. On cherche à déterminer la présence d'inclusions élastiques à partir d'observations partielles et bruitées, enregistrées dans la partie acoustique du milieu. On dérive tout d'abord une formulation variationnelle acousto-élastique des équations, puis on construit un solveur élément finis, pour résoudre numériquement les problèmes direct et retourné temporellement. En s'inspirant de travaux sur la migration sismique, on introduit un critère objectif, qui nous permet de construire une image des inclusions a déterminer. Des illustrations numériques, sur des données qui simulent la configuration du cancer du sein, sont proposées et montrent qu'il est possible de différencier des inclusions, même avec des propriétés différentes.
Accepted:
Published online:
Mots-clés : Retournement temporel, Propagation d'ondes, Problèmes inverses, Acousto-élastodynamique, Simulation numérique, Identification
Franck Assous 1; Moshe Lin 1
@article{CRMECA_2019__347_6_455_0, author = {Franck Assous and Moshe Lin}, title = {Time reversal for obstacle location in elastodynamics from acoustic recording}, journal = {Comptes Rendus. M\'ecanique}, pages = {455--462}, publisher = {Elsevier}, volume = {347}, number = {6}, year = {2019}, doi = {10.1016/j.crme.2019.02.001}, language = {en}, }
Franck Assous; Moshe Lin. Time reversal for obstacle location in elastodynamics from acoustic recording. Comptes Rendus. Mécanique, Volume 347 (2019) no. 6, pp. 455-462. doi : 10.1016/j.crme.2019.02.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.02.001/
[1] Imaging through inhomogeneous media using time reversal mirrors, Ultrason. Imag., Volume 13 (1991) no. 2, pp. 179-199
[2] Time-reversal imaging of seismic sources and application to the great sumatra earthquake, Geophys. Res. Lett., Volume 33 (2006), pp. 1-4
[3] Imaging tools in rheumatoid arthritis: ultrasound vs magnetic resonance imaging, Rheumatology, Volume 51 (2012), pp. 36-42
[4] Mathematical foundations of the time reversal mirror, Asymptot. Anal., Volume 29 (2002), pp. 157-182
[5] A time-reversal method for an acoustical pulse propagating in randomly layered media, Wave Motion, Volume 25 (1997), pp. 361-368
[6] Super-resolution in time-reversal acoustics, J. Acoust. Soc. Am., Volume 111 (2002), pp. 230-248
[7] Breast elastography: present and future, Int. J. Radiol. Radiat. Ther., Volume 4 (2017) no. 3, pp. 379-384
[8] Imaging the Earth's Interior, Blackwell, 1985
[9] Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection, Wave Motion, Volume 42 (2005), pp. 31-52
[10] Time-reversed absorbing conditions in the partial aperture case, Wave Motion, Volume 49 (2012), pp. 617-631
[11] Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am., Volume 67 (1977) no. 6, pp. 1529-1540
[12] Absorbing Boundary Conditions for Rayleigh Waves, INRIA, 1985 (Research Report RR-0384)
[13] Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, Series Studies in Mathematics and Its Applications, North-Holland, Amsterdam, 1988
[14] Time reversed absorbing condition: application to inverse problems, Inverse Probl., Volume 27 (2011) no. 6
[15] Time reversal with the FDTD method for microwave breast cancer detection, IEEE Trans. Microw. Theory Tech., Volume 53 (2005) no. 7, pp. 2317-2323
[16] Time reversal with partial information for wave refocusing and scatterer identification, Comput. Methods Appl. Mech. Eng., Volume 213 (2012) no. 216, pp. 223-242
[17] New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265
[18] Seismic Migration, Elsevier, Amsterdam, Oxford, New York, Tokyo, 1984
[19] Three-dimensional and real-time two-dimensional topological imaging using parallel computing, J. Acoust. Soc. Am., Volume 138 (2015), p. 1796
[20] Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Comput. Methods Appl. Mech. Eng., Volume 195 (2006), pp. 5239-5254
[21] Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences Series, Springer, 2013
[22] Time reversal for elastic wave refocusing and scatterer location recovery, J. Comput. Acoust., Volume 23 (2015), pp. 1-29
Cited by Sources:
Comments - Policy