Comptes Rendus
Time reversal for obstacle location in elastodynamics from acoustic recording
Comptes Rendus. Mécanique, Volume 347 (2019) no. 6, pp. 455-462.

The Note is concerned with a feasibility study of time reversal in a non-homogeneous elastic medium, from data recorded in an acoustic medium. Our aim here is to determine the presence and some physical properties of elastic “inclusions” (unknown, not observable solid objects, characterized by their elastic properties) from partial observations of acoustic waves scattered by these inclusions. A finite element numerical method, based on a variational acousto-elastodynamics formulation, is derived and used to solve the forward, and then, the time-reversed problem. A criterion, derived from the reverse time migration framework, is introduced, to help construct images of the inclusions to be determined. Numerical illustrations on configurations that mimic the breast cancer configuration are proposed, and show that one can differentiate between two inclusions, even with different properties.

Le but de cette note est d'étudier le retourné temporel d'un problème posé dans un milieu acousto-élastique non homogène. On cherche à déterminer la présence d'inclusions élastiques à partir d'observations partielles et bruitées, enregistrées dans la partie acoustique du milieu. On dérive tout d'abord une formulation variationnelle acousto-élastique des équations, puis on construit un solveur élément finis, pour résoudre numériquement les problèmes direct et retourné temporellement. En s'inspirant de travaux sur la migration sismique, on introduit un critère objectif, qui nous permet de construire une image des inclusions a déterminer. Des illustrations numériques, sur des données qui simulent la configuration du cancer du sein, sont proposées et montrent qu'il est possible de différencier des inclusions, même avec des propriétés différentes.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2019.02.001
Keywords: Time reversal, Wave propagation, Inverse problem, Acousto-elastodynamics, Numerical simulation, Identification
Mot clés : Retournement temporel, Propagation d'ondes, Problèmes inverses, Acousto-élastodynamique, Simulation numérique, Identification

Franck Assous 1; Moshe Lin 1

1 Department of Mathematics, Ariel University, 40700 Ariel, Israel
@article{CRMECA_2019__347_6_455_0,
     author = {Franck Assous and Moshe Lin},
     title = {Time reversal for obstacle location in elastodynamics from acoustic recording},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {455--462},
     publisher = {Elsevier},
     volume = {347},
     number = {6},
     year = {2019},
     doi = {10.1016/j.crme.2019.02.001},
     language = {en},
}
TY  - JOUR
AU  - Franck Assous
AU  - Moshe Lin
TI  - Time reversal for obstacle location in elastodynamics from acoustic recording
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 455
EP  - 462
VL  - 347
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2019.02.001
LA  - en
ID  - CRMECA_2019__347_6_455_0
ER  - 
%0 Journal Article
%A Franck Assous
%A Moshe Lin
%T Time reversal for obstacle location in elastodynamics from acoustic recording
%J Comptes Rendus. Mécanique
%D 2019
%P 455-462
%V 347
%N 6
%I Elsevier
%R 10.1016/j.crme.2019.02.001
%G en
%F CRMECA_2019__347_6_455_0
Franck Assous; Moshe Lin. Time reversal for obstacle location in elastodynamics from acoustic recording. Comptes Rendus. Mécanique, Volume 347 (2019) no. 6, pp. 455-462. doi : 10.1016/j.crme.2019.02.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.02.001/

[1] M. Fink; F. Wu; D. Cassereau; R. Mallart Imaging through inhomogeneous media using time reversal mirrors, Ultrason. Imag., Volume 13 (1991) no. 2, pp. 179-199

[2] C. Larmat; J.-P. Montagner; M. Fink; Y. Capdeville; A. Tourin; E. Clévédé Time-reversal imaging of seismic sources and application to the great sumatra earthquake, Geophys. Res. Lett., Volume 33 (2006), pp. 1-4

[3] Y.K. Tan; M. Ostergaard; P.G. Conaghan Imaging tools in rheumatoid arthritis: ultrasound vs magnetic resonance imaging, Rheumatology, Volume 51 (2012), pp. 36-42

[4] C. Bardos; M. Fink Mathematical foundations of the time reversal mirror, Asymptot. Anal., Volume 29 (2002), pp. 157-182

[5] J.-F. Clouet; J.-P. Fouque A time-reversal method for an acoustical pulse propagating in randomly layered media, Wave Motion, Volume 25 (1997), pp. 361-368

[6] P. Blomgren; G. Papanicolaou; H. Zhao Super-resolution in time-reversal acoustics, J. Acoust. Soc. Am., Volume 111 (2002), pp. 230-248

[7] E. Fernandez Breast elastography: present and future, Int. J. Radiol. Radiat. Ther., Volume 4 (2017) no. 3, pp. 379-384

[8] J.F. Claerbout Imaging the Earth's Interior, Blackwell, 1985

[9] N. Dominguez; V. Gibiat; Y. Esquerré Time domain topological gradient and time reversal analogy: an inverse method for ultrasonic target detection, Wave Motion, Volume 42 (2005), pp. 31-52

[10] F. Assous; M. Kray; F. Nataf Time-reversed absorbing conditions in the partial aperture case, Wave Motion, Volume 49 (2012), pp. 617-631

[11] R. Clayton; B. Engquist Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am., Volume 67 (1977) no. 6, pp. 1529-1540

[12] A. Bamberger; P. Joly; J. Roberts; J.L. Teron Absorbing Boundary Conditions for Rayleigh Waves, INRIA, 1985 (Research Report RR-0384)

[13] P.G. Ciarlet Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, Series Studies in Mathematics and Its Applications, North-Holland, Amsterdam, 1988

[14] F. Assous; M. Kray; F. Nataf; E. Turkel Time reversed absorbing condition: application to inverse problems, Inverse Probl., Volume 27 (2011) no. 6

[15] P. Kosmas; C.M. Rappaport Time reversal with the FDTD method for microwave breast cancer detection, IEEE Trans. Microw. Theory Tech., Volume 53 (2005) no. 7, pp. 2317-2323

[16] D. Givoli; E. Turkel Time reversal with partial information for wave refocusing and scatterer identification, Comput. Methods Appl. Mech. Eng., Volume 213 (2012) no. 216, pp. 223-242

[17] F. Hecht New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265

[18] A.J. Berkhout Seismic Migration, Elsevier, Amsterdam, Oxford, New York, Tokyo, 1984

[19] E. Bachmann; X. Jacob; S. Rodriguez; V. Gibiat Three-dimensional and real-time two-dimensional topological imaging using parallel computing, J. Acoust. Soc. Am., Volume 138 (2015), p. 1796

[20] M. Bonnet Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Comput. Methods Appl. Mech. Eng., Volume 195 (2006), pp. 5239-5254

[21] D.L. Colton; R. Kress Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences Series, Springer, 2013

[22] I. Levi; E. Turkel; D. Givoli Time reversal for elastic wave refocusing and scatterer location recovery, J. Comput. Acoust., Volume 23 (2015), pp. 1-29

Cited by Sources:

Comments - Policy