[Conditions aux limites absorbantes retournées temporellement]
Le but de cette note est d'introduire les conditions absorbantes retournées temporellement (TRAC) dans les méthodes de retournement temporel. Elles rendent possible la « reconstruction du passé » sans connaître la source émettrice des signaux enregistrés puis rétropropagés. Cette nouvelle méthode ne nécessite pas de connaissance a priori des propriétés physiques de l'inclusion. Nous démontrons une estimation d'énergie pour le problème non standard obtenu. Deux applications aux problèmes inverses sont proposées.
The aim of this note is to introduce the time reversed absorbing conditions (TRAC) in time reversal methods. These new boundary conditions enable one to “recreate the past” without knowing the source which has emitted the signals that are back-propagated. This new method does not rely on any a priori knowledge of the physical properties of the inclusion. We prove an energy estimate for the resulting non-standard boundary value problem. Two applications to inverse problems are given.
Accepté le :
Publié le :
Franck Assous 1, 2 ; Marie Kray 3 ; Frédéric Nataf 3 ; Eli Turkel 4
@article{CRMATH_2010__348_19-20_1063_0, author = {Franck Assous and Marie Kray and Fr\'ed\'eric Nataf and Eli Turkel}, title = {Time reversed absorbing conditions}, journal = {Comptes Rendus. Math\'ematique}, pages = {1063--1067}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.014}, language = {en}, }
Franck Assous; Marie Kray; Frédéric Nataf; Eli Turkel. Time reversed absorbing conditions. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1063-1067. doi : 10.1016/j.crma.2010.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.014/
[1] Time reversed absorbing condition: Application to inverse problem | HAL
[2] Mathematical foundations of the time reversal mirror, Asymptot. Anal., Volume 29 (2002) no. 2, pp. 157-182
[3] Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., Volume 33 (1980) no. 6, pp. 707-725
[4] Wave-equation datuming, Geophysics, Volume 44 (1979) no. 206, p. 132944
[5] Super-resolution in time-reversal acoustics, J. Acoust. Soc. Am., Volume 111 (2002), pp. 230-248
[6] Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink, Phys. Rev. Lett., Volume 89 (2002) no. 12
[7] Renversement du temps, ondes et innovation, Ed. Fayard, 2009
[8] Imaging through inhomogeneous media using time reversal mirrors, Ultrasonic Imaging, Volume 13 (1991) no. 2, p. 199
[9] FreeFem++. Numerical Mathematics and Scientific Computation, Laboratoire J.L. Lions, Université Pierre et Marie Curie, 2010 http://www.freefem.org/ff++/
[10] Time-reversal imaging of seismic sources and application to the great Sumatra earthquake, Geophys. Res. Lett., Volume 33 (2006)
Cité par Sources :
☆ This work was supported by the French–Israeli Grant FIST-MATHS2.
Commentaires - Politique