Comptes Rendus
Partial Differential Equations/Numerical Analysis
Time reversed absorbing conditions
[Conditions aux limites absorbantes retournées temporellement]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1063-1067.

Le but de cette note est d'introduire les conditions absorbantes retournées temporellement (TRAC) dans les méthodes de retournement temporel. Elles rendent possible la « reconstruction du passé » sans connaître la source émettrice des signaux enregistrés puis rétropropagés. Cette nouvelle méthode ne nécessite pas de connaissance a priori des propriétés physiques de l'inclusion. Nous démontrons une estimation d'énergie pour le problème non standard obtenu. Deux applications aux problèmes inverses sont proposées.

The aim of this note is to introduce the time reversed absorbing conditions (TRAC) in time reversal methods. These new boundary conditions enable one to “recreate the past” without knowing the source which has emitted the signals that are back-propagated. This new method does not rely on any a priori knowledge of the physical properties of the inclusion. We prove an energy estimate for the resulting non-standard boundary value problem. Two applications to inverse problems are given.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.09.014

Franck Assous 1, 2 ; Marie Kray 3 ; Frédéric Nataf 3 ; Eli Turkel 4

1 Bar Ilan University, 52900 Ramat Gan, Israel
2 Ariel University Center, 40700 Ariel, Israel
3 UPMC Université Paris-06, UMR 7598, laboratoire J.L. Lions, 75005 Paris, France
4 Tel-Aviv University, 69978 Ramat Aviv, Israel
@article{CRMATH_2010__348_19-20_1063_0,
     author = {Franck Assous and Marie Kray and Fr\'ed\'eric Nataf and Eli Turkel},
     title = {Time reversed absorbing conditions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1063--1067},
     publisher = {Elsevier},
     volume = {348},
     number = {19-20},
     year = {2010},
     doi = {10.1016/j.crma.2010.09.014},
     language = {en},
}
TY  - JOUR
AU  - Franck Assous
AU  - Marie Kray
AU  - Frédéric Nataf
AU  - Eli Turkel
TI  - Time reversed absorbing conditions
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1063
EP  - 1067
VL  - 348
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2010.09.014
LA  - en
ID  - CRMATH_2010__348_19-20_1063_0
ER  - 
%0 Journal Article
%A Franck Assous
%A Marie Kray
%A Frédéric Nataf
%A Eli Turkel
%T Time reversed absorbing conditions
%J Comptes Rendus. Mathématique
%D 2010
%P 1063-1067
%V 348
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2010.09.014
%G en
%F CRMATH_2010__348_19-20_1063_0
Franck Assous; Marie Kray; Frédéric Nataf; Eli Turkel. Time reversed absorbing conditions. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1063-1067. doi : 10.1016/j.crma.2010.09.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.014/

[1] F. Assous; M. Kray; F. Nataf; E. Turkel Time reversed absorbing condition: Application to inverse problem | HAL

[2] C. Bardos; M. Fink Mathematical foundations of the time reversal mirror, Asymptot. Anal., Volume 29 (2002) no. 2, pp. 157-182

[3] A. Bayliss; E. Turkel Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., Volume 33 (1980) no. 6, pp. 707-725

[4] J.R. Berryhill Wave-equation datuming, Geophysics, Volume 44 (1979) no. 206, p. 132944

[5] P. Blomgren; G. Papanicolaou; H. Zhao Super-resolution in time-reversal acoustics, J. Acoust. Soc. Am., Volume 111 (2002), pp. 230-248

[6] J. de Rosny; M. Fink Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink, Phys. Rev. Lett., Volume 89 (2002) no. 12

[7] M. Fink Renversement du temps, ondes et innovation, Ed. Fayard, 2009

[8] M. Fink; F. Wu; D. Cassereau; R. Mallart Imaging through inhomogeneous media using time reversal mirrors, Ultrasonic Imaging, Volume 13 (1991) no. 2, p. 199

[9] F. Hecht FreeFem++. Numerical Mathematics and Scientific Computation, Laboratoire J.L. Lions, Université Pierre et Marie Curie, 2010 http://www.freefem.org/ff++/

[10] C. Larmat; J.-P. Montagner; M. Fink; Y. Capdeville; A. Tourin; E. Clévédé Time-reversal imaging of seismic sources and application to the great Sumatra earthquake, Geophys. Res. Lett., Volume 33 (2006)

  • Marie Graff; Mina Cullen TRAC method in dissipative media – a first analysis in frequency domain and homogeneous media, Inverse Problems, Volume 39 (2023) no. 6, p. 31 (Id/No 064007) | DOI:10.1088/1361-6420/acd272 | Zbl:7691087
  • Daniel Rabinovich; Eyal Amitt; Dan Givoli; Eli Turkel Comparison of the FWI-adjoint and time reversal methods for the identification of elastic scatterers, Journal of Theoretical and Computational Acoustics, Volume 30 (2022) no. 3, p. 37 (Id/No 2240004) | DOI:10.1142/s2591728522400047 | Zbl:1533.76064
  • F. Assous; M. Lin Solving an inverse acousto-elastic scattering problems by combining full-waveform redatuming and time reversal, Journal of Computational Physics, Volume 445 (2021), p. 110603 | DOI:10.1016/j.jcp.2021.110603
  • Tomer Levin; Eli Turkel; Dan Givoli Obstacle identification using the TRAC algorithm with a second-order ABC, International Journal for Numerical Methods in Engineering, Volume 118 (2019) no. 2, pp. 61-92 | DOI:10.1002/nme.6003 | Zbl:1548.65192
  • Marie Graff; Marcus J. Grote; Frédéric Nataf; Franck Assous How to solve inverse scattering problems without knowing the source term: a three-step strategy, Inverse Problems, Volume 35 (2019) no. 10, p. 20 (Id/No 104001) | DOI:10.1088/1361-6420/ab2d5f | Zbl:1426.78020
  • Adar Kahana; Eli Turkel; Dan Givoli Convective Wave Equation and Time Reversal Process for Source Refocusing, Journal of Theoretical and Computational Acoustics, Volume 26 (2018) no. 02, p. 1850016 | DOI:10.1142/s2591728518500160
  • Maya de Buhan; Marie Kray A new approach to solve the inverse scattering problem for waves: combining the TRAC and the adaptive inversion methods, Inverse Problems, Volume 29 (2013) no. 8, p. 085009 | DOI:10.1088/0266-5611/29/8/085009
  • F. Assous; M. Kray; F. Nataf Time-reversed absorbing conditions in the partial aperture case, Wave Motion, Volume 49 (2012) no. 7, pp. 617-631 | DOI:10.1016/j.wavemoti.2012.03.006 | Zbl:1360.35314
  • Caroline Baldassari; Hélène Barucq; Henri Calandra; Julien Diaz Numerical performances of a hybrid local‐time stepping strategy applied to the reverse time migration, Geophysical Prospecting, Volume 59 (2011) no. 5, p. 907 | DOI:10.1111/j.1365-2478.2011.00975.x
  • F Assous; M Kray; F Nataf; E Turkel Time-reversed absorbing condition: application to inverse problems, Inverse Problems, Volume 27 (2011) no. 6, p. 065003 | DOI:10.1088/0266-5611/27/6/065003

Cité par 10 documents. Sources : Crossref, zbMATH

This work was supported by the French–Israeli Grant FIST-MATHS2.

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: