In this paper, we propose a new analytical formula to define the next branch in the Asymptotic Numerical Method (ANM) using the Padé approximants. The proposed formula is based on the computation of the relative error of two consecutive Padé approximants. This formula is obtained by developing the relative error with respect to the path parameter. An appropriate matrix formulation is adopted for the computation of this relative error. A comparison between the analytical formula proposed in this paper and the classical continuation Padé approximants using the step length computed numerically using dichotomy method is presented for examples of buckling structures.
Accepted:
Published online:
Rachida Ayane 1; Abdellah Hamdaoui 1; Bouazza Braikat 1; Noureddine Tounsi 1; Noureddine Damil 1
@article{CRMECA_2019__347_6_463_0, author = {Rachida Ayane and Abdellah Hamdaoui and Bouazza Braikat and Noureddine Tounsi and Noureddine Damil}, title = {A new analytical formula to compute the step length of {Pad\'e} approximants in the {ANM:} {Application} to buckling structures}, journal = {Comptes Rendus. M\'ecanique}, pages = {463--476}, publisher = {Elsevier}, volume = {347}, number = {6}, year = {2019}, doi = {10.1016/j.crme.2019.04.001}, language = {en}, }
TY - JOUR AU - Rachida Ayane AU - Abdellah Hamdaoui AU - Bouazza Braikat AU - Noureddine Tounsi AU - Noureddine Damil TI - A new analytical formula to compute the step length of Padé approximants in the ANM: Application to buckling structures JO - Comptes Rendus. Mécanique PY - 2019 SP - 463 EP - 476 VL - 347 IS - 6 PB - Elsevier DO - 10.1016/j.crme.2019.04.001 LA - en ID - CRMECA_2019__347_6_463_0 ER -
%0 Journal Article %A Rachida Ayane %A Abdellah Hamdaoui %A Bouazza Braikat %A Noureddine Tounsi %A Noureddine Damil %T A new analytical formula to compute the step length of Padé approximants in the ANM: Application to buckling structures %J Comptes Rendus. Mécanique %D 2019 %P 463-476 %V 347 %N 6 %I Elsevier %R 10.1016/j.crme.2019.04.001 %G en %F CRMECA_2019__347_6_463_0
Rachida Ayane; Abdellah Hamdaoui; Bouazza Braikat; Noureddine Tounsi; Noureddine Damil. A new analytical formula to compute the step length of Padé approximants in the ANM: Application to buckling structures. Comptes Rendus. Mécanique, Volume 347 (2019) no. 6, pp. 463-476. doi : 10.1016/j.crme.2019.04.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.04.001/
[1] An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., Volume 15 (1979) no. 7, pp. 529-551
[2] A fast incremental/iterative solution procedure that handles “snap-through”, Computational Methods in Nonlinear Structural and Solid Mechanics, Elsevier, 1981, pp. 55-62
[3] Derivatives of tangential stiffness matrices for equilibrium path descriptions, Int. J. Numer. Methods Eng., Volume 32 (1991) no. 5, pp. 1093-1113
[4] et al. Arc-length technique for nonlinear finite element analysis, J. Zhejiang Univ. Sci. A, Volume 5 (2004) no. 5, pp. 618-628
[5] A computational and experimental analysis of the buckling, postbuckling and initial failure of pultruded GRP columns, Comput. Struct., Volume 84 (2006) no. 22–23, pp. 1527-1537
[6] Non-linear analysis of structures using two-point method, Int. J. Non-Linear Mech., Volume 46 (2011) no. 6, pp. 834-840
[7] Co-rotational finite element formulation used in the Koiter–Newton method for nonlinear buckling analyses, Finite Elem. Anal. Des., Volume 116 (2016), pp. 38-54
[8] Nonlinear elastic buckling and postbuckling analysis of cylindrical panels, Finite Elem. Anal. Des., Volume 96 (2015), pp. 41-50
[9] A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures, Int. J. Eng. Sci., Volume 28 (1990) no. 9, pp. 943-957
[10] A path-following technique via an asymptotic-numerical method, Comput. Struct., Volume 53 (1994) no. 5, pp. 1181-1192
[11] Traitement des fortes non-linéarités par la méthode asymptotique numérique, C. R. Acad. Sci. Paris, Sér. IIb, Volume 324 (1997) no. 3, pp. 171-177
[12] Méthodes asymptotiques numériques pour la plasticité, Rev. Eur. Éléments Finis, Volume 6 (1997) no. 3, pp. 337-357
[13] A numerical continuation method based on Padé approximants, Int. J. Solids Struct., Volume 37 (2000) no. 46–47, pp. 6981-7001
[14] A high order implicit algorithm for solving instationary non-linear problems, Comput. Mech., Volume 28 (2002) no. 5, pp. 375-380
[15] Projection techniques to improve high-order iterative correctors, Finite Elem. Anal. Des., Volume 41 (2004) no. 3, pp. 285-309
[16] Méthode asymptotique numérique, Hermès Lavoisier, 2007
[17] Local parameterization and the asymptotic numerical method, Math. Model. Nat. Phenom., Volume 5 (2010) no. 7, pp. 16-22
[18] Discussion about parameterization in the asymptotic numerical method: application to nonlinear elastic shells, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 25–28, pp. 1701-1709
[19] Computer-extended series, Annu. Rev. Fluid Mech., Volume 16 (1984) no. 1, pp. 287-309
[20] Vector Padé approximants, Numerical Mathematics and Applications, Elsevier, 1985, pp. 73-77
[21] Sur la représentation approchée d'une fonction par des fractions rationnelles, vol. 740, Gauthier-Villars et fils, 1892
[22] Asymptotic–numerical methods and Padé approximants for non-linear elastic structures, Int. J. Numer. Methods Eng., Volume 37 (1994) no. 7, pp. 1187-1213
[23] On the use of Padé approximant in the Asymptotic Numerical Method ANM to compute the post-buckling of shells, Finite Elem. Anal. Des., Volume 137 (2017), pp. 1-10
[24] Modélisation des structures par éléments finis: Solides élastiques, Presses de l'université Laval, Québec, Canada, 1990
[25] Modélisation des structures par élément finis, vol. 3, Éditions Hermès, 1992
Cited by Sources:
Comments - Policy